Oracle Cloud Infrastructure v2.17.0 published on Friday, Nov 15, 2024 by Pulumi
oci.AiVision.getModels
Explore with Pulumi AI
This data source provides the list of Models in Oracle Cloud Infrastructure Ai Vision service.
Returns a list of Models.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModels = oci.AiVision.getModels({
compartmentId: compartmentId,
displayName: modelDisplayName,
id: modelId,
projectId: testProject.id,
state: modelState,
});
import pulumi
import pulumi_oci as oci
test_models = oci.AiVision.get_models(compartment_id=compartment_id,
display_name=model_display_name,
id=model_id,
project_id=test_project["id"],
state=model_state)
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/AiVision"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiVision.GetModels(ctx, &aivision.GetModelsArgs{
CompartmentId: pulumi.StringRef(compartmentId),
DisplayName: pulumi.StringRef(modelDisplayName),
Id: pulumi.StringRef(modelId),
ProjectId: pulumi.StringRef(testProject.Id),
State: pulumi.StringRef(modelState),
}, nil)
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModels = Oci.AiVision.GetModels.Invoke(new()
{
CompartmentId = compartmentId,
DisplayName = modelDisplayName,
Id = modelId,
ProjectId = testProject.Id,
State = modelState,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var testModels = AiVisionFunctions.getModels(GetModelsArgs.builder()
.compartmentId(compartmentId)
.displayName(modelDisplayName)
.id(modelId)
.projectId(testProject.id())
.state(modelState)
.build());
}
}
variables:
testModels:
fn::invoke:
Function: oci:AiVision:getModels
Arguments:
compartmentId: ${compartmentId}
displayName: ${modelDisplayName}
id: ${modelId}
projectId: ${testProject.id}
state: ${modelState}
Using getModels
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModels(args: GetModelsArgs, opts?: InvokeOptions): Promise<GetModelsResult>
function getModelsOutput(args: GetModelsOutputArgs, opts?: InvokeOptions): Output<GetModelsResult>
def get_models(compartment_id: Optional[str] = None,
display_name: Optional[str] = None,
filters: Optional[Sequence[_aivision.GetModelsFilter]] = None,
id: Optional[str] = None,
project_id: Optional[str] = None,
state: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetModelsResult
def get_models_output(compartment_id: Optional[pulumi.Input[str]] = None,
display_name: Optional[pulumi.Input[str]] = None,
filters: Optional[pulumi.Input[Sequence[pulumi.Input[_aivision.GetModelsFilterArgs]]]] = None,
id: Optional[pulumi.Input[str]] = None,
project_id: Optional[pulumi.Input[str]] = None,
state: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetModelsResult]
func GetModels(ctx *Context, args *GetModelsArgs, opts ...InvokeOption) (*GetModelsResult, error)
func GetModelsOutput(ctx *Context, args *GetModelsOutputArgs, opts ...InvokeOption) GetModelsResultOutput
> Note: This function is named GetModels
in the Go SDK.
public static class GetModels
{
public static Task<GetModelsResult> InvokeAsync(GetModelsArgs args, InvokeOptions? opts = null)
public static Output<GetModelsResult> Invoke(GetModelsInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: oci:AiVision/getModels:getModels
arguments:
# arguments dictionary
The following arguments are supported:
- Compartment
Id string - The ID of the compartment in which to list resources.
- Display
Name string - A filter to return only resources that match the entire display name given.
- Filters
List<Get
Models Filter> - Id string
- unique Model identifier
- Project
Id string - The ID of the project for which to list the objects.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Compartment
Id string - The ID of the compartment in which to list resources.
- Display
Name string - A filter to return only resources that match the entire display name given.
- Filters
[]Get
Models Filter - Id string
- unique Model identifier
- Project
Id string - The ID of the project for which to list the objects.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartment
Id String - The ID of the compartment in which to list resources.
- display
Name String - A filter to return only resources that match the entire display name given.
- filters
List<Get
Models Filter> - id String
- unique Model identifier
- project
Id String - The ID of the project for which to list the objects.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartment
Id string - The ID of the compartment in which to list resources.
- display
Name string - A filter to return only resources that match the entire display name given.
- filters
Get
Models Filter[] - id string
- unique Model identifier
- project
Id string - The ID of the project for which to list the objects.
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartment_
id str - The ID of the compartment in which to list resources.
- display_
name str - A filter to return only resources that match the entire display name given.
- filters
Sequence[aivision.
Get Models Filter] - id str
- unique Model identifier
- project_
id str - The ID of the project for which to list the objects.
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartment
Id String - The ID of the compartment in which to list resources.
- display
Name String - A filter to return only resources that match the entire display name given.
- filters List<Property Map>
- id String
- unique Model identifier
- project
Id String - The ID of the project for which to list the objects.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
getModels Result
The following output properties are available:
- Model
Collections List<GetModels Model Collection> - The list of model_collection.
- Compartment
Id string - Compartment Identifier
- Display
Name string - Model Identifier, can be renamed
- Filters
List<Get
Models Filter> - Id string
- Unique identifier that is immutable on creation
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The current state of the Model.
- Model
Collections []GetModels Model Collection - The list of model_collection.
- Compartment
Id string - Compartment Identifier
- Display
Name string - Model Identifier, can be renamed
- Filters
[]Get
Models Filter - Id string
- Unique identifier that is immutable on creation
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The current state of the Model.
- model
Collections List<GetModels Model Collection> - The list of model_collection.
- compartment
Id String - Compartment Identifier
- display
Name String - Model Identifier, can be renamed
- filters
List<Get
Models Filter> - id String
- Unique identifier that is immutable on creation
- project
Id String - The OCID of the project to associate with the model.
- state String
- The current state of the Model.
- model
Collections GetModels Model Collection[] - The list of model_collection.
- compartment
Id string - Compartment Identifier
- display
Name string - Model Identifier, can be renamed
- filters
Get
Models Filter[] - id string
- Unique identifier that is immutable on creation
- project
Id string - The OCID of the project to associate with the model.
- state string
- The current state of the Model.
- model_
collections Sequence[aivision.Get Models Model Collection] - The list of model_collection.
- compartment_
id str - Compartment Identifier
- display_
name str - Model Identifier, can be renamed
- filters
Sequence[aivision.
Get Models Filter] - id str
- Unique identifier that is immutable on creation
- project_
id str - The OCID of the project to associate with the model.
- state str
- The current state of the Model.
- model
Collections List<Property Map> - The list of model_collection.
- compartment
Id String - Compartment Identifier
- display
Name String - Model Identifier, can be renamed
- filters List<Property Map>
- id String
- Unique identifier that is immutable on creation
- project
Id String - The OCID of the project to associate with the model.
- state String
- The current state of the Model.
Supporting Types
GetModelsFilter
GetModelsModelCollection
GetModelsModelCollectionItem
- Average
Precision double - Average precision of the trained model
- Compartment
Id string - The ID of the compartment in which to list resources.
- Confidence
Threshold double - Confidence ratio of the calculation
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - A filter to return only resources that match the entire display name given.
- Dictionary<string, string>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- unique Model identifier
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training doubleDuration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision double
- Precision of the trained model
- Project
Id string - The ID of the project for which to list the objects.
- Recall double
- Recall of the trained model
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets List<GetModels Model Collection Item Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration doubleIn Hours - Total hours actually used for training
- Training
Datasets List<GetModels Model Collection Item Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets List<GetModels Model Collection Item Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Average
Precision float64 - Average precision of the trained model
- Compartment
Id string - The ID of the compartment in which to list resources.
- Confidence
Threshold float64 - Confidence ratio of the calculation
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - A filter to return only resources that match the entire display name given.
- map[string]string
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- unique Model identifier
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training float64Duration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision float64
- Precision of the trained model
- Project
Id string - The ID of the project for which to list the objects.
- Recall float64
- Recall of the trained model
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets []GetModels Model Collection Item Testing Dataset - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration float64In Hours - Total hours actually used for training
- Training
Datasets []GetModels Model Collection Item Training Dataset - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets []GetModels Model Collection Item Validation Dataset - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Double - Average precision of the trained model
- compartment
Id String - The ID of the compartment in which to list resources.
- confidence
Threshold Double - Confidence ratio of the calculation
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - A filter to return only resources that match the entire display name given.
- Map<String,String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- unique Model identifier
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training DoubleDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Double
- Precision of the trained model
- project
Id String - The ID of the project for which to list the objects.
- recall Double
- Recall of the trained model
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image IntegerCount - Total number of testing Images
- testing
Datasets List<GetModels Model Collection Item Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image IntegerCount - Total number of training Images
- trained
Duration DoubleIn Hours - Total hours actually used for training
- training
Datasets List<GetModels Model Collection Item Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<GetModels Model Collection Item Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- average
Precision number - Average precision of the trained model
- compartment
Id string - The ID of the compartment in which to list resources.
- confidence
Threshold number - Confidence ratio of the calculation
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
- A short description of the model.
- display
Name string - A filter to return only resources that match the entire display name given.
- {[key: string]: string}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id string
- unique Model identifier
- is
Quick booleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training numberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- model
Type string - Type of the Model.
- model
Version string - The version of the model
- precision number
- Precision of the trained model
- project
Id string - The ID of the project for which to list the objects.
- recall number
- Recall of the trained model
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image numberCount - Total number of testing Images
- testing
Datasets GetModels Model Collection Item Testing Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image numberCount - Total number of training Images
- trained
Duration numberIn Hours - Total hours actually used for training
- training
Datasets GetModels Model Collection Item Training Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets GetModels Model Collection Item Validation Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- average_
precision float - Average precision of the trained model
- compartment_
id str - The ID of the compartment in which to list resources.
- confidence_
threshold float - Confidence ratio of the calculation
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
- A short description of the model.
- display_
name str - A filter to return only resources that match the entire display name given.
- Mapping[str, str]
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id str
- unique Model identifier
- is_
quick_ boolmode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_
training_ floatduration_ in_ hours - The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_
type str - Type of the Model.
- model_
version str - The version of the model
- precision float
- Precision of the trained model
- project_
id str - The ID of the project for which to list the objects.
- recall float
- Recall of the trained model
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test_
image_ intcount - Total number of testing Images
- testing_
datasets Sequence[aivision.Get Models Model Collection Item Testing Dataset] - The base entity for a Dataset, which is the input for Model creation.
- time_
created str - The time the Model was created. An RFC3339 formatted datetime string
- time_
updated str - The time the Model was updated. An RFC3339 formatted datetime string
- total_
image_ intcount - Total number of training Images
- trained_
duration_ floatin_ hours - Total hours actually used for training
- training_
datasets Sequence[aivision.Get Models Model Collection Item Training Dataset] - The base entity for a Dataset, which is the input for Model creation.
- validation_
datasets Sequence[aivision.Get Models Model Collection Item Validation Dataset] - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Number - Average precision of the trained model
- compartment
Id String - The ID of the compartment in which to list resources.
- confidence
Threshold Number - Confidence ratio of the calculation
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - A filter to return only resources that match the entire display name given.
- Map<String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- unique Model identifier
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training NumberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Number
- Precision of the trained model
- project
Id String - The ID of the project for which to list the objects.
- recall Number
- Recall of the trained model
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image NumberCount - Total number of testing Images
- testing
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image NumberCount - Total number of training Images
- trained
Duration NumberIn Hours - Total hours actually used for training
- training
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
GetModelsModelCollectionItemTestingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
GetModelsModelCollectionItemTrainingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
GetModelsModelCollectionItemValidationDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.