kubernetes.flowcontrol.apiserver.k8s.io/v1.PriorityLevelConfigurationPatch
Explore with Pulumi AI
Patch resources are used to modify existing Kubernetes resources by using Server-Side Apply updates. The name of the resource must be specified, but all other properties are optional. More than one patch may be applied to the same resource, and a random FieldManager name will be used for each Patch resource. Conflicts will result in an error by default, but can be forced using the “pulumi.com/patchForce” annotation. See the Server-Side Apply Docs for additional information about using Server-Side Apply to manage Kubernetes resources with Pulumi. PriorityLevelConfiguration represents the configuration of a priority level.
Create PriorityLevelConfigurationPatch Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new PriorityLevelConfigurationPatch(name: string, args?: PriorityLevelConfigurationPatch, opts?: CustomResourceOptions);
@overload
def PriorityLevelConfigurationPatch(resource_name: str,
args: Optional[PriorityLevelConfigurationPatchArgs] = None,
opts: Optional[ResourceOptions] = None)
@overload
def PriorityLevelConfigurationPatch(resource_name: str,
opts: Optional[ResourceOptions] = None,
metadata: Optional[_meta.v1.ObjectMetaPatchArgs] = None,
spec: Optional[_flowcontrol_apiserver_k8s_io.v1.PriorityLevelConfigurationSpecPatchArgs] = None)
func NewPriorityLevelConfigurationPatch(ctx *Context, name string, args *PriorityLevelConfigurationPatchArgs, opts ...ResourceOption) (*PriorityLevelConfigurationPatch, error)
public PriorityLevelConfigurationPatch(string name, PriorityLevelConfigurationPatchArgs? args = null, CustomResourceOptions? opts = null)
public PriorityLevelConfigurationPatch(String name, PriorityLevelConfigurationPatchArgs args)
public PriorityLevelConfigurationPatch(String name, PriorityLevelConfigurationPatchArgs args, CustomResourceOptions options)
type: kubernetes:flowcontrol.apiserver.k8s.io/v1:PriorityLevelConfigurationPatch
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args PriorityLevelConfigurationPatch
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args PriorityLevelConfigurationPatchArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args PriorityLevelConfigurationPatchArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args PriorityLevelConfigurationPatchArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args PriorityLevelConfigurationPatchArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
PriorityLevelConfigurationPatch Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The PriorityLevelConfigurationPatch resource accepts the following input properties:
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta Patch metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- Spec
Priority
Level Configuration Spec Patch spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- Metadata
Object
Meta Patch Args metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- Spec
Priority
Level Configuration Spec Patch Args spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
Object
Meta Patch metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- spec
Priority
Level Configuration Spec Patch spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
meta.v1.
Object Meta Patch metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- spec
Priority
Level Configuration Spec Patch spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
meta.v1.
Object Meta Patch Args metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- spec
flowcontrol_
apiserver_ k8s_ io.v1. Priority Level Configuration Spec Patch Args spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata Property Map
metadata
is the standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata- spec Property Map
spec
is the specification of the desired behavior of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
Outputs
All input properties are implicitly available as output properties. Additionally, the PriorityLevelConfigurationPatch resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Priority
Level Configuration Status Patch status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Priority
Level Configuration Status Patch status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id String
- The provider-assigned unique ID for this managed resource.
- status
Priority
Level Configuration Status Patch status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id string
- The provider-assigned unique ID for this managed resource.
- status
Priority
Level Configuration Status Patch status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id str
- The provider-assigned unique ID for this managed resource.
- status
flowcontrol_
apiserver_ k8s_ io.v1. Priority Level Configuration Status Patch status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id String
- The provider-assigned unique ID for this managed resource.
- status Property Map
status
is the current status of a "request-priority". More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
Supporting Types
ExemptPriorityLevelConfigurationPatch, ExemptPriorityLevelConfigurationPatchArgs
- Lendable
Percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
- Lendable
Percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
- lendable
Percent Integer lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- Integer
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
- lendable
Percent number lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- number
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
- lendable_
percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
- lendable
Percent Number lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. This value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- Number
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats nominally reserved for this priority level. This DOES NOT limit the dispatching from this priority level but affects the other priority levels through the borrowing mechanism. The server's concurrency limit (ServerCL) is divided among all the priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level. This field has a default value of zero.
LimitResponsePatch, LimitResponsePatchArgs
- Queuing
Queuing
Configuration Patch queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- Type string
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
- Queuing
Queuing
Configuration Patch queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- Type string
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
- queuing
Queuing
Configuration Patch queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- type String
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
- queuing
Queuing
Configuration Patch queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- type string
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
- queuing
flowcontrol_
apiserver_ k8s_ io.v1. Queuing Configuration Patch queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- type str
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
- queuing Property Map
queuing
holds the configuration parameters for queuing. This field may be non-empty only iftype
is"Queue"
.- type String
type
is "Queue" or "Reject". "Queue" means that requests that can not be executed upon arrival are held in a queue until they can be executed or a queuing limit is reached. "Reject" means that requests that can not be executed upon arrival are rejected. Required.
LimitedPriorityLevelConfigurationPatch, LimitedPriorityLevelConfigurationPatchArgs
- Borrowing
Limit intPercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- Lendable
Percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- Limit
Response LimitResponse Patch limitResponse
indicates what to do with requests that can not be executed right now- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
- Borrowing
Limit intPercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- Lendable
Percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- Limit
Response LimitResponse Patch limitResponse
indicates what to do with requests that can not be executed right now- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
- borrowing
Limit IntegerPercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- lendable
Percent Integer lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- limit
Response LimitResponse Patch limitResponse
indicates what to do with requests that can not be executed right now- Integer
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
- borrowing
Limit numberPercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- lendable
Percent number lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- limit
Response LimitResponse Patch limitResponse
indicates what to do with requests that can not be executed right now- number
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
- borrowing_
limit_ intpercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- lendable_
percent int lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- limit_
response flowcontrol_apiserver_ k8s_ io.v1. Limit Response Patch limitResponse
indicates what to do with requests that can not be executed right now- int
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
- borrowing
Limit NumberPercent borrowingLimitPercent
, if present, configures a limit on how many seats this priority level can borrow from other priority levels. The limit is known as this level's BorrowingConcurrencyLimit (BorrowingCL) and is a limit on the total number of seats that this level may borrow at any one time. This field holds the ratio of that limit to the level's nominal concurrency limit. When this field is non-nil, it must hold a non-negative integer and the limit is calculated as follows.BorrowingCL(i) = round( NominalCL(i) * borrowingLimitPercent(i)/100.0 )
The value of this field can be more than 100, implying that this priority level can borrow a number of seats that is greater than its own nominal concurrency limit (NominalCL). When this field is left
nil
, the limit is effectively infinite.- lendable
Percent Number lendablePercent
prescribes the fraction of the level's NominalCL that can be borrowed by other priority levels. The value of this field must be between 0 and 100, inclusive, and it defaults to 0. The number of seats that other levels can borrow from this level, known as this level's LendableConcurrencyLimit (LendableCL), is defined as follows.LendableCL(i) = round( NominalCL(i) * lendablePercent(i)/100.0 )
- limit
Response Property Map limitResponse
indicates what to do with requests that can not be executed right now- Number
nominalConcurrencyShares
(NCS) contributes to the computation of the NominalConcurrencyLimit (NominalCL) of this level. This is the number of execution seats available at this priority level. This is used both for requests dispatched from this priority level as well as requests dispatched from other priority levels borrowing seats from this level. The server's concurrency limit (ServerCL) is divided among the Limited priority levels in proportion to their NCS values:NominalCL(i) = ceil( ServerCL * NCS(i) / sum_ncs ) sum_ncs = sum[priority level k] NCS(k)
Bigger numbers mean a larger nominal concurrency limit, at the expense of every other priority level.
If not specified, this field defaults to a value of 30.
Setting this field to zero supports the construction of a "jail" for this priority level that is used to hold some request(s)
ManagedFieldsEntryPatch, ManagedFieldsEntryPatchArgs
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 System.Text. Json. Json Element - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 interface{} - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JsonElement - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager string
- Manager is an identifier of the workflow managing these fields.
- operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api_
version str - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields_
type str - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields_
v1 Any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager str
- Manager is an identifier of the workflow managing these fields.
- operation str
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource str
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time str
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JSON - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
ObjectMetaPatch, ObjectMetaPatchArgs
- Annotations Dictionary<string, string>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers List<string>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels Dictionary<string, string>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields List<Pulumi.Kubernetes. Meta. V1. Inputs. Managed Fields Entry Patch> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References List<Pulumi.Kubernetes. Meta. V1. Inputs. Owner Reference Patch> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Annotations map[string]string
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers []string
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels map[string]string
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields ManagedFields Entry Patch - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References OwnerReference Patch - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String,String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace IntegerPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Integer
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String,String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<ManagedFields Entry Patch> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<OwnerReference Patch> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations {[key: string]: string}
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace numberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers string[]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels {[key: string]: string}
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields meta.v1.Managed Fields Entry Patch[] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References meta.v1.Owner Reference Patch[] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Mapping[str, str]
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster_
name str - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation_
timestamp str CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion_
grace_ intperiod_ seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion_
timestamp str DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers Sequence[str]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate_
name str GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Mapping[str, str]
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed_
fields Sequence[meta.v1.Managed Fields Entry Patch] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name str
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace str
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner_
references Sequence[meta.v1.Owner Reference Patch] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource_
version str An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self_
link str - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid str
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace NumberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<Property Map> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<Property Map> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
OwnerReferencePatch, OwnerReferencePatchArgs
- Api
Version string - API version of the referent.
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Api
Version string - API version of the referent.
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- api
Version String - API version of the referent.
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- api
Version string - API version of the referent.
- block
Owner booleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller boolean
- If true, this reference points to the managing controller.
- kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- api_
version str - API version of the referent.
- block_
owner_ booldeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller bool
- If true, this reference points to the managing controller.
- kind str
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name str
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid str
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- api
Version String - API version of the referent.
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
PriorityLevelConfigurationConditionPatch, PriorityLevelConfigurationConditionPatchArgs
- Last
Transition stringTime lastTransitionTime
is the last time the condition transitioned from one status to another.- Message string
message
is a human-readable message indicating details about last transition.- Reason string
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- Status string
status
is the status of the condition. Can be True, False, Unknown. Required.- Type string
type
is the type of the condition. Required.
- Last
Transition stringTime lastTransitionTime
is the last time the condition transitioned from one status to another.- Message string
message
is a human-readable message indicating details about last transition.- Reason string
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- Status string
status
is the status of the condition. Can be True, False, Unknown. Required.- Type string
type
is the type of the condition. Required.
- last
Transition StringTime lastTransitionTime
is the last time the condition transitioned from one status to another.- message String
message
is a human-readable message indicating details about last transition.- reason String
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- status String
status
is the status of the condition. Can be True, False, Unknown. Required.- type String
type
is the type of the condition. Required.
- last
Transition stringTime lastTransitionTime
is the last time the condition transitioned from one status to another.- message string
message
is a human-readable message indicating details about last transition.- reason string
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- status string
status
is the status of the condition. Can be True, False, Unknown. Required.- type string
type
is the type of the condition. Required.
- last_
transition_ strtime lastTransitionTime
is the last time the condition transitioned from one status to another.- message str
message
is a human-readable message indicating details about last transition.- reason str
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- status str
status
is the status of the condition. Can be True, False, Unknown. Required.- type str
type
is the type of the condition. Required.
- last
Transition StringTime lastTransitionTime
is the last time the condition transitioned from one status to another.- message String
message
is a human-readable message indicating details about last transition.- reason String
reason
is a unique, one-word, CamelCase reason for the condition's last transition.- status String
status
is the status of the condition. Can be True, False, Unknown. Required.- type String
type
is the type of the condition. Required.
PriorityLevelConfigurationSpecPatch, PriorityLevelConfigurationSpecPatchArgs
- Exempt
Exempt
Priority Level Configuration Patch exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- Limited
Limited
Priority Level Configuration Patch limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- Type string
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
- Exempt
Exempt
Priority Level Configuration Patch exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- Limited
Limited
Priority Level Configuration Patch limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- Type string
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
- exempt
Exempt
Priority Level Configuration Patch exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- limited
Limited
Priority Level Configuration Patch limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- type String
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
- exempt
Exempt
Priority Level Configuration Patch exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- limited
Limited
Priority Level Configuration Patch limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- type string
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
- exempt
flowcontrol_
apiserver_ k8s_ io.v1. Exempt Priority Level Configuration Patch exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- limited
flowcontrol_
apiserver_ k8s_ io.v1. Limited Priority Level Configuration Patch limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- type str
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
- exempt Property Map
exempt
specifies how requests are handled for an exempt priority level. This field MUST be empty iftype
is"Limited"
. This field MAY be non-empty iftype
is"Exempt"
. If empty andtype
is"Exempt"
then the default values forExemptPriorityLevelConfiguration
apply.- limited Property Map
limited
specifies how requests are handled for a Limited priority level. This field must be non-empty if and only iftype
is"Limited"
.- type String
type
indicates whether this priority level is subject to limitation on request execution. A value of"Exempt"
means that requests of this priority level are not subject to a limit (and thus are never queued) and do not detract from the capacity made available to other priority levels. A value of"Limited"
means that (a) requests of this priority level are subject to limits and (b) some of the server's limited capacity is made available exclusively to this priority level. Required.
PriorityLevelConfigurationStatusPatch, PriorityLevelConfigurationStatusPatchArgs
- Conditions
List<Priority
Level Configuration Condition Patch> conditions
is the current state of "request-priority".
- Conditions
[]Priority
Level Configuration Condition Patch conditions
is the current state of "request-priority".
- conditions
List<Priority
Level Configuration Condition Patch> conditions
is the current state of "request-priority".
- conditions
Priority
Level Configuration Condition Patch[] conditions
is the current state of "request-priority".
- conditions
Sequence[flowcontrol_
apiserver_ k8s_ io.v1. Priority Level Configuration Condition Patch] conditions
is the current state of "request-priority".
- conditions List<Property Map>
conditions
is the current state of "request-priority".
QueuingConfigurationPatch, QueuingConfigurationPatchArgs
- Hand
Size int handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- Queue
Length intLimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- Queues int
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
- Hand
Size int handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- Queue
Length intLimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- Queues int
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
- hand
Size Integer handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- queue
Length IntegerLimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- queues Integer
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
- hand
Size number handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- queue
Length numberLimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- queues number
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
- hand_
size int handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- queue_
length_ intlimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- queues int
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
- hand
Size Number handSize
is a small positive number that configures the shuffle sharding of requests into queues. When enqueuing a request at this priority level the request's flow identifier (a string pair) is hashed and the hash value is used to shuffle the list of queues and deal a hand of the size specified here. The request is put into one of the shortest queues in that hand.handSize
must be no larger thanqueues
, and should be significantly smaller (so that a few heavy flows do not saturate most of the queues). See the user-facing documentation for more extensive guidance on setting this field. This field has a default value of 8.- queue
Length NumberLimit queueLengthLimit
is the maximum number of requests allowed to be waiting in a given queue of this priority level at a time; excess requests are rejected. This value must be positive. If not specified, it will be defaulted to 50.- queues Number
queues
is the number of queues for this priority level. The queues exist independently at each apiserver. The value must be positive. Setting it to 1 effectively precludes shufflesharding and thus makes the distinguisher method of associated flow schemas irrelevant. This field has a default value of 64.
Package Details
- Repository
- Kubernetes pulumi/pulumi-kubernetes
- License
- Apache-2.0