1. Packages
  2. Kubernetes
  3. API Docs
  4. core
  5. core/v1
  6. PersistentVolumeClaim
Kubernetes v4.18.3 published on Thursday, Oct 31, 2024 by Pulumi

kubernetes.core/v1.PersistentVolumeClaim

Explore with Pulumi AI

kubernetes logo
Kubernetes v4.18.3 published on Thursday, Oct 31, 2024 by Pulumi

    PersistentVolumeClaim is a user’s request for and claim to a persistent volume

    Create PersistentVolumeClaim Resource

    Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.

    Constructor syntax

    new PersistentVolumeClaim(name: string, args?: PersistentVolumeClaim, opts?: CustomResourceOptions);
    @overload
    def PersistentVolumeClaim(resource_name: str,
                              args: Optional[PersistentVolumeClaimInitArgs] = None,
                              opts: Optional[ResourceOptions] = None)
    
    @overload
    def PersistentVolumeClaim(resource_name: str,
                              opts: Optional[ResourceOptions] = None,
                              metadata: Optional[_meta.v1.ObjectMetaArgs] = None,
                              spec: Optional[PersistentVolumeClaimSpecArgs] = None)
    func NewPersistentVolumeClaim(ctx *Context, name string, args *PersistentVolumeClaimArgs, opts ...ResourceOption) (*PersistentVolumeClaim, error)
    public PersistentVolumeClaim(string name, PersistentVolumeClaimArgs? args = null, CustomResourceOptions? opts = null)
    public PersistentVolumeClaim(String name, PersistentVolumeClaimArgs args)
    public PersistentVolumeClaim(String name, PersistentVolumeClaimArgs args, CustomResourceOptions options)
    
    type: kubernetes:core/v1:PersistentVolumeClaim
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    

    Parameters

    name string
    The unique name of the resource.
    args PersistentVolumeClaim
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args PersistentVolumeClaimInitArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args PersistentVolumeClaimArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args PersistentVolumeClaimArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args PersistentVolumeClaimArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    PersistentVolumeClaim Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.

    The PersistentVolumeClaim resource accepts the following input properties:

    Metadata Pulumi.Kubernetes.Meta.V1.Inputs.ObjectMeta
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    Spec PersistentVolumeClaimSpec
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    Metadata ObjectMetaArgs
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    Spec PersistentVolumeClaimSpecArgs
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    metadata ObjectMeta
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    spec PersistentVolumeClaimSpec
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    metadata meta.v1.ObjectMeta
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    spec PersistentVolumeClaimSpec
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    metadata meta.v1.ObjectMetaArgs
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    spec PersistentVolumeClaimSpecArgs
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    metadata Property Map
    Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
    spec Property Map
    spec defines the desired characteristics of a volume requested by a pod author. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims

    Outputs

    All input properties are implicitly available as output properties. Additionally, the PersistentVolumeClaim resource produces the following output properties:

    Id string
    The provider-assigned unique ID for this managed resource.
    Status PersistentVolumeClaimStatus
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    Id string
    The provider-assigned unique ID for this managed resource.
    Status PersistentVolumeClaimStatus
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    id String
    The provider-assigned unique ID for this managed resource.
    status PersistentVolumeClaimStatus
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    id string
    The provider-assigned unique ID for this managed resource.
    status PersistentVolumeClaimStatus
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    id str
    The provider-assigned unique ID for this managed resource.
    status PersistentVolumeClaimStatus
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
    id String
    The provider-assigned unique ID for this managed resource.
    status Property Map
    status represents the current information/status of a persistent volume claim. Read-only. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims

    Supporting Types

    LabelSelector, LabelSelectorArgs

    MatchExpressions List<Pulumi.Kubernetes.Meta.V1.Inputs.LabelSelectorRequirement>
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    MatchLabels Dictionary<string, string>
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
    MatchExpressions LabelSelectorRequirement
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    MatchLabels map[string]string
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
    matchExpressions List<LabelSelectorRequirement>
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    matchLabels Map<String,String>
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
    matchExpressions meta.v1.LabelSelectorRequirement[]
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    matchLabels {[key: string]: string}
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
    match_expressions Sequence[meta.v1.LabelSelectorRequirement]
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    match_labels Mapping[str, str]
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
    matchExpressions List<Property Map>
    matchExpressions is a list of label selector requirements. The requirements are ANDed.
    matchLabels Map<String>
    matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.

    LabelSelectorRequirement, LabelSelectorRequirementArgs

    Key string
    key is the label key that the selector applies to.
    Operator string
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    Values List<string>
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
    Key string
    key is the label key that the selector applies to.
    Operator string
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    Values []string
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
    key String
    key is the label key that the selector applies to.
    operator String
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    values List<String>
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
    key string
    key is the label key that the selector applies to.
    operator string
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    values string[]
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
    key str
    key is the label key that the selector applies to.
    operator str
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    values Sequence[str]
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
    key String
    key is the label key that the selector applies to.
    operator String
    operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
    values List<String>
    values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.

    ManagedFieldsEntry, ManagedFieldsEntryArgs

    ApiVersion string
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    FieldsType string
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    FieldsV1 System.Text.Json.JsonElement
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    Manager string
    Manager is an identifier of the workflow managing these fields.
    Operation string
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    Subresource string
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    Time string
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
    ApiVersion string
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    FieldsType string
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    FieldsV1 interface{}
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    Manager string
    Manager is an identifier of the workflow managing these fields.
    Operation string
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    Subresource string
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    Time string
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
    apiVersion String
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    fieldsType String
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    fieldsV1 JsonElement
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    manager String
    Manager is an identifier of the workflow managing these fields.
    operation String
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    subresource String
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    time String
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
    apiVersion string
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    fieldsType string
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    fieldsV1 any
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    manager string
    Manager is an identifier of the workflow managing these fields.
    operation string
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    subresource string
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    time string
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
    api_version str
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    fields_type str
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    fields_v1 Any
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    manager str
    Manager is an identifier of the workflow managing these fields.
    operation str
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    subresource str
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    time str
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
    apiVersion String
    APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
    fieldsType String
    FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
    fieldsV1 JSON
    FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
    manager String
    Manager is an identifier of the workflow managing these fields.
    operation String
    Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
    subresource String
    Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
    time String
    Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.

    ModifyVolumeStatus, ModifyVolumeStatusArgs

    Status string
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    TargetVolumeAttributesClassName string
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled
    Status string
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    TargetVolumeAttributesClassName string
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled
    status String
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    targetVolumeAttributesClassName String
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled
    status string
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    targetVolumeAttributesClassName string
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled
    status str
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    target_volume_attributes_class_name str
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled
    status String
    status is the status of the ControllerModifyVolume operation. It can be in any of following states:

    • Pending Pending indicates that the PersistentVolumeClaim cannot be modified due to unmet requirements, such as the specified VolumeAttributesClass not existing.
    • InProgress InProgress indicates that the volume is being modified.
    • Infeasible Infeasible indicates that the request has been rejected as invalid by the CSI driver. To resolve the error, a valid VolumeAttributesClass needs to be specified. Note: New statuses can be added in the future. Consumers should check for unknown statuses and fail appropriately.
    targetVolumeAttributesClassName String
    targetVolumeAttributesClassName is the name of the VolumeAttributesClass the PVC currently being reconciled

    ObjectMeta, ObjectMetaArgs

    Annotations Dictionary<string, string>
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    ClusterName string
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    CreationTimestamp string

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    DeletionGracePeriodSeconds int
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    DeletionTimestamp string

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    Finalizers List<string>
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    GenerateName string

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    Generation int
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    Labels Dictionary<string, string>
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    ManagedFields List<Pulumi.Kubernetes.Meta.V1.Inputs.ManagedFieldsEntry>
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    Name string
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    Namespace string

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    OwnerReferences List<Pulumi.Kubernetes.Meta.V1.Inputs.OwnerReference>
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    ResourceVersion string

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    SelfLink string
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    Uid string

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    Annotations map[string]string
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    ClusterName string
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    CreationTimestamp string

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    DeletionGracePeriodSeconds int
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    DeletionTimestamp string

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    Finalizers []string
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    GenerateName string

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    Generation int
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    Labels map[string]string
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    ManagedFields ManagedFieldsEntry
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    Name string
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    Namespace string

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    OwnerReferences OwnerReference
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    ResourceVersion string

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    SelfLink string
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    Uid string

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    annotations Map<String,String>
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    clusterName String
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    creationTimestamp String

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    deletionGracePeriodSeconds Integer
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    deletionTimestamp String

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    finalizers List<String>
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    generateName String

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    generation Integer
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    labels Map<String,String>
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    managedFields List<ManagedFieldsEntry>
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    name String
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    namespace String

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    ownerReferences List<OwnerReference>
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    resourceVersion String

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    selfLink String
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    uid String

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    annotations {[key: string]: string}
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    clusterName string
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    creationTimestamp string

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    deletionGracePeriodSeconds number
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    deletionTimestamp string

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    finalizers string[]
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    generateName string

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    generation number
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    labels {[key: string]: string}
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    managedFields meta.v1.ManagedFieldsEntry[]
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    name string
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    namespace string

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    ownerReferences meta.v1.OwnerReference[]
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    resourceVersion string

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    selfLink string
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    uid string

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    annotations Mapping[str, str]
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    cluster_name str
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    creation_timestamp str

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    deletion_grace_period_seconds int
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    deletion_timestamp str

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    finalizers Sequence[str]
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    generate_name str

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    generation int
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    labels Mapping[str, str]
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    managed_fields Sequence[meta.v1.ManagedFieldsEntry]
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    name str
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    namespace str

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    owner_references Sequence[meta.v1.OwnerReference]
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    resource_version str

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    self_link str
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    uid str

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    annotations Map<String>
    Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
    clusterName String
    The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
    creationTimestamp String

    CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.

    Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    deletionGracePeriodSeconds Number
    Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
    deletionTimestamp String

    DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.

    Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

    finalizers List<String>
    Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
    generateName String

    GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.

    If this field is specified and the generated name exists, the server will return a 409.

    Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency

    generation Number
    A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
    labels Map<String>
    Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
    managedFields List<Property Map>
    ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
    name String
    Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    namespace String

    Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.

    Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces

    ownerReferences List<Property Map>
    List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
    resourceVersion String

    An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.

    Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency

    selfLink String
    Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
    uid String

    UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.

    Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids

    OwnerReference, OwnerReferenceArgs

    ApiVersion string
    API version of the referent.
    Kind string
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    Name string
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    Uid string
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    BlockOwnerDeletion bool
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    Controller bool
    If true, this reference points to the managing controller.
    ApiVersion string
    API version of the referent.
    Kind string
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    Name string
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    Uid string
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    BlockOwnerDeletion bool
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    Controller bool
    If true, this reference points to the managing controller.
    apiVersion String
    API version of the referent.
    kind String
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    name String
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    uid String
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    blockOwnerDeletion Boolean
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    controller Boolean
    If true, this reference points to the managing controller.
    apiVersion string
    API version of the referent.
    kind string
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    name string
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    uid string
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    blockOwnerDeletion boolean
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    controller boolean
    If true, this reference points to the managing controller.
    api_version str
    API version of the referent.
    kind str
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    name str
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    uid str
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    block_owner_deletion bool
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    controller bool
    If true, this reference points to the managing controller.
    apiVersion String
    API version of the referent.
    kind String
    Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
    name String
    Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
    uid String
    UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
    blockOwnerDeletion Boolean
    If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
    controller Boolean
    If true, this reference points to the managing controller.

    PersistentVolumeClaimCondition, PersistentVolumeClaimConditionArgs

    Status string
    Type string
    LastProbeTime string
    lastProbeTime is the time we probed the condition.
    LastTransitionTime string
    lastTransitionTime is the time the condition transitioned from one status to another.
    Message string
    message is the human-readable message indicating details about last transition.
    Reason string
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.
    Status string
    Type string
    LastProbeTime string
    lastProbeTime is the time we probed the condition.
    LastTransitionTime string
    lastTransitionTime is the time the condition transitioned from one status to another.
    Message string
    message is the human-readable message indicating details about last transition.
    Reason string
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.
    status String
    type String
    lastProbeTime String
    lastProbeTime is the time we probed the condition.
    lastTransitionTime String
    lastTransitionTime is the time the condition transitioned from one status to another.
    message String
    message is the human-readable message indicating details about last transition.
    reason String
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.
    status string
    type string
    lastProbeTime string
    lastProbeTime is the time we probed the condition.
    lastTransitionTime string
    lastTransitionTime is the time the condition transitioned from one status to another.
    message string
    message is the human-readable message indicating details about last transition.
    reason string
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.
    status str
    type str
    last_probe_time str
    lastProbeTime is the time we probed the condition.
    last_transition_time str
    lastTransitionTime is the time the condition transitioned from one status to another.
    message str
    message is the human-readable message indicating details about last transition.
    reason str
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.
    status String
    type String
    lastProbeTime String
    lastProbeTime is the time we probed the condition.
    lastTransitionTime String
    lastTransitionTime is the time the condition transitioned from one status to another.
    message String
    message is the human-readable message indicating details about last transition.
    reason String
    reason is a unique, this should be a short, machine understandable string that gives the reason for condition's last transition. If it reports "Resizing" that means the underlying persistent volume is being resized.

    PersistentVolumeClaimSpec, PersistentVolumeClaimSpecArgs

    AccessModes List<string>
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    DataSource TypedLocalObjectReference
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    DataSourceRef TypedObjectReference
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    Resources VolumeResourceRequirements
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    Selector Pulumi.Kubernetes.Meta.V1.Inputs.LabelSelector
    selector is a label query over volumes to consider for binding.
    StorageClassName string
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    VolumeAttributesClassName string
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    VolumeMode string
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    VolumeName string
    volumeName is the binding reference to the PersistentVolume backing this claim.
    AccessModes []string
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    DataSource TypedLocalObjectReference
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    DataSourceRef TypedObjectReference
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    Resources VolumeResourceRequirements
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    Selector LabelSelector
    selector is a label query over volumes to consider for binding.
    StorageClassName string
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    VolumeAttributesClassName string
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    VolumeMode string
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    VolumeName string
    volumeName is the binding reference to the PersistentVolume backing this claim.
    accessModes List<String>
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    dataSource TypedLocalObjectReference
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    dataSourceRef TypedObjectReference
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    resources VolumeResourceRequirements
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    selector LabelSelector
    selector is a label query over volumes to consider for binding.
    storageClassName String
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    volumeAttributesClassName String
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    volumeMode String
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    volumeName String
    volumeName is the binding reference to the PersistentVolume backing this claim.
    accessModes string[]
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    dataSource TypedLocalObjectReference
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    dataSourceRef TypedObjectReference
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    resources VolumeResourceRequirements
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    selector meta.v1.LabelSelector
    selector is a label query over volumes to consider for binding.
    storageClassName string
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    volumeAttributesClassName string
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    volumeMode string
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    volumeName string
    volumeName is the binding reference to the PersistentVolume backing this claim.
    access_modes Sequence[str]
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    data_source TypedLocalObjectReference
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    data_source_ref TypedObjectReference
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    resources VolumeResourceRequirements
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    selector meta.v1.LabelSelector
    selector is a label query over volumes to consider for binding.
    storage_class_name str
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    volume_attributes_class_name str
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    volume_mode str
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    volume_name str
    volumeName is the binding reference to the PersistentVolume backing this claim.
    accessModes List<String>
    accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    dataSource Property Map
    dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
    dataSourceRef Property Map
    dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.

    • While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
    • While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    resources Property Map
    resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
    selector Property Map
    selector is a label query over volumes to consider for binding.
    storageClassName String
    storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
    volumeAttributesClassName String
    volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
    volumeMode String
    volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
    volumeName String
    volumeName is the binding reference to the PersistentVolume backing this claim.

    PersistentVolumeClaimStatus, PersistentVolumeClaimStatusArgs

    AccessModes List<string>
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    AllocatedResourceStatuses Dictionary<string, string>

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    AllocatedResources Dictionary<string, string>

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    Capacity Dictionary<string, string>
    capacity represents the actual resources of the underlying volume.
    Conditions List<PersistentVolumeClaimCondition>
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    CurrentVolumeAttributesClassName string
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    ModifyVolumeStatus ModifyVolumeStatus
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    Phase string
    phase represents the current phase of PersistentVolumeClaim.
    ResizeStatus string
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.
    AccessModes []string
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    AllocatedResourceStatuses map[string]string

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    AllocatedResources map[string]string

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    Capacity map[string]string
    capacity represents the actual resources of the underlying volume.
    Conditions []PersistentVolumeClaimCondition
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    CurrentVolumeAttributesClassName string
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    ModifyVolumeStatus ModifyVolumeStatus
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    Phase string
    phase represents the current phase of PersistentVolumeClaim.
    ResizeStatus string
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.
    accessModes List<String>
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    allocatedResourceStatuses Map<String,String>

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    allocatedResources Map<String,String>

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    capacity Map<String,String>
    capacity represents the actual resources of the underlying volume.
    conditions List<PersistentVolumeClaimCondition>
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    currentVolumeAttributesClassName String
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    modifyVolumeStatus ModifyVolumeStatus
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    phase String
    phase represents the current phase of PersistentVolumeClaim.
    resizeStatus String
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.
    accessModes string[]
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    allocatedResourceStatuses {[key: string]: string}

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    allocatedResources {[key: string]: string}

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    capacity {[key: string]: string}
    capacity represents the actual resources of the underlying volume.
    conditions PersistentVolumeClaimCondition[]
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    currentVolumeAttributesClassName string
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    modifyVolumeStatus ModifyVolumeStatus
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    phase string
    phase represents the current phase of PersistentVolumeClaim.
    resizeStatus string
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.
    access_modes Sequence[str]
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    allocated_resource_statuses Mapping[str, str]

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    allocated_resources Mapping[str, str]

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    capacity Mapping[str, str]
    capacity represents the actual resources of the underlying volume.
    conditions Sequence[PersistentVolumeClaimCondition]
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    current_volume_attributes_class_name str
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    modify_volume_status ModifyVolumeStatus
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    phase str
    phase represents the current phase of PersistentVolumeClaim.
    resize_status str
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.
    accessModes List<String>
    accessModes contains the actual access modes the volume backing the PVC has. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
    allocatedResourceStatuses Map<String>

    allocatedResourceStatuses stores status of resource being resized for the given PVC. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    ClaimResourceStatus can be in any of following states: - ControllerResizeInProgress: State set when resize controller starts resizing the volume in control-plane. - ControllerResizeFailed: State set when resize has failed in resize controller with a terminal error. - NodeResizePending: State set when resize controller has finished resizing the volume but further resizing of volume is needed on the node. - NodeResizeInProgress: State set when kubelet starts resizing the volume. - NodeResizeFailed: State set when resizing has failed in kubelet with a terminal error. Transient errors don't set NodeResizeFailed. For example: if expanding a PVC for more capacity - this field can be one of the following states: - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "ControllerResizeFailed" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizePending" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeInProgress" - pvc.status.allocatedResourceStatus['storage'] = "NodeResizeFailed" When this field is not set, it means that no resize operation is in progress for the given PVC.

    A controller that receives PVC update with previously unknown resourceName or ClaimResourceStatus should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    allocatedResources Map<String>

    allocatedResources tracks the resources allocated to a PVC including its capacity. Key names follow standard Kubernetes label syntax. Valid values are either: * Un-prefixed keys: - storage - the capacity of the volume. * Custom resources must use implementation-defined prefixed names such as "example.com/my-custom-resource" Apart from above values - keys that are unprefixed or have kubernetes.io prefix are considered reserved and hence may not be used.

    Capacity reported here may be larger than the actual capacity when a volume expansion operation is requested. For storage quota, the larger value from allocatedResources and PVC.spec.resources is used. If allocatedResources is not set, PVC.spec.resources alone is used for quota calculation. If a volume expansion capacity request is lowered, allocatedResources is only lowered if there are no expansion operations in progress and if the actual volume capacity is equal or lower than the requested capacity.

    A controller that receives PVC update with previously unknown resourceName should ignore the update for the purpose it was designed. For example - a controller that only is responsible for resizing capacity of the volume, should ignore PVC updates that change other valid resources associated with PVC.

    This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    capacity Map<String>
    capacity represents the actual resources of the underlying volume.
    conditions List<Property Map>
    conditions is the current Condition of persistent volume claim. If underlying persistent volume is being resized then the Condition will be set to 'Resizing'.
    currentVolumeAttributesClassName String
    currentVolumeAttributesClassName is the current name of the VolumeAttributesClass the PVC is using. When unset, there is no VolumeAttributeClass applied to this PersistentVolumeClaim This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    modifyVolumeStatus Property Map
    ModifyVolumeStatus represents the status object of ControllerModifyVolume operation. When this is unset, there is no ModifyVolume operation being attempted. This is a beta field and requires enabling VolumeAttributesClass feature (off by default).
    phase String
    phase represents the current phase of PersistentVolumeClaim.
    resizeStatus String
    resizeStatus stores status of resize operation. ResizeStatus is not set by default but when expansion is complete resizeStatus is set to empty string by resize controller or kubelet. This is an alpha field and requires enabling RecoverVolumeExpansionFailure feature.

    TypedLocalObjectReference, TypedLocalObjectReferenceArgs

    Kind string
    Kind is the type of resource being referenced
    Name string
    Name is the name of resource being referenced
    ApiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    Kind string
    Kind is the type of resource being referenced
    Name string
    Name is the name of resource being referenced
    ApiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    kind String
    Kind is the type of resource being referenced
    name String
    Name is the name of resource being referenced
    apiGroup String
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    kind string
    Kind is the type of resource being referenced
    name string
    Name is the name of resource being referenced
    apiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    kind str
    Kind is the type of resource being referenced
    name str
    Name is the name of resource being referenced
    api_group str
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    kind String
    Kind is the type of resource being referenced
    name String
    Name is the name of resource being referenced
    apiGroup String
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.

    TypedObjectReference, TypedObjectReferenceArgs

    Kind string
    Kind is the type of resource being referenced
    Name string
    Name is the name of resource being referenced
    ApiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    Namespace string
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    Kind string
    Kind is the type of resource being referenced
    Name string
    Name is the name of resource being referenced
    ApiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    Namespace string
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    kind String
    Kind is the type of resource being referenced
    name String
    Name is the name of resource being referenced
    apiGroup String
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    namespace String
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    kind string
    Kind is the type of resource being referenced
    name string
    Name is the name of resource being referenced
    apiGroup string
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    namespace string
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    kind str
    Kind is the type of resource being referenced
    name str
    Name is the name of resource being referenced
    api_group str
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    namespace str
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
    kind String
    Kind is the type of resource being referenced
    name String
    Name is the name of resource being referenced
    apiGroup String
    APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
    namespace String
    Namespace is the namespace of resource being referenced Note that when a namespace is specified, a gateway.networking.k8s.io/ReferenceGrant object is required in the referent namespace to allow that namespace's owner to accept the reference. See the ReferenceGrant documentation for details. (Alpha) This field requires the CrossNamespaceVolumeDataSource feature gate to be enabled.

    VolumeResourceRequirements, VolumeResourceRequirementsArgs

    Limits Dictionary<string, string>
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    Requests Dictionary<string, string>
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    Limits map[string]string
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    Requests map[string]string
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    limits Map<String,String>
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    requests Map<String,String>
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    limits {[key: string]: string}
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    requests {[key: string]: string}
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    limits Mapping[str, str]
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    requests Mapping[str, str]
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    limits Map<String>
    Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
    requests Map<String>
    Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. Requests cannot exceed Limits. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

    Package Details

    Repository
    Kubernetes pulumi/pulumi-kubernetes
    License
    Apache-2.0
    kubernetes logo
    Kubernetes v4.18.3 published on Thursday, Oct 31, 2024 by Pulumi