Google Cloud Native is in preview. Google Cloud Classic is fully supported.
google-native.ml/v1.Study
Explore with Pulumi AI
Google Cloud Native is in preview. Google Cloud Classic is fully supported.
Creates a study. Auto-naming is currently not supported for this resource.
Create Study Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Study(name: string, args: StudyArgs, opts?: CustomResourceOptions);
@overload
def Study(resource_name: str,
args: StudyArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Study(resource_name: str,
opts: Optional[ResourceOptions] = None,
study_config: Optional[GoogleCloudMlV1__StudyConfigArgs] = None,
study_id: Optional[str] = None,
location: Optional[str] = None,
project: Optional[str] = None)
func NewStudy(ctx *Context, name string, args StudyArgs, opts ...ResourceOption) (*Study, error)
public Study(string name, StudyArgs args, CustomResourceOptions? opts = null)
type: google-native:ml/v1:Study
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplestudyResourceResourceFromMlv1 = new GoogleNative.Ml.V1.Study("examplestudyResourceResourceFromMlv1", new()
{
StudyConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1__StudyConfigArgs
{
Parameters = new[]
{
new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfig_ParameterSpecArgs
{
Parameter = "string",
Type = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.ParameterTypeUnspecified,
CategoricalValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs
{
Values = new[]
{
"string",
},
},
ChildParameterSpecs = new[]
{
googleCloudMlV1_StudyConfig_ParameterSpec,
},
DiscreteValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs
{
Values = new[]
{
0,
},
},
DoubleValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs
{
MaxValue = 0,
MinValue = 0,
},
IntegerValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs
{
MaxValue = "string",
MinValue = "string",
},
ParentCategoricalValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs
{
Values = new[]
{
"string",
},
},
ParentDiscreteValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs
{
Values = new[]
{
0,
},
},
ParentIntValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs
{
Values = new[]
{
"string",
},
},
ScaleType = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.ScaleTypeUnspecified,
},
},
Algorithm = GoogleNative.Ml.V1.GoogleCloudMlV1__StudyConfigAlgorithm.AlgorithmUnspecified,
AutomatedStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1__AutomatedStoppingConfigArgs
{
DecayCurveStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs
{
UseElapsedTime = false,
},
MedianAutomatedStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs
{
UseElapsedTime = false,
},
},
Metrics = new[]
{
new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfig_MetricSpecArgs
{
Goal = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GoalTypeUnspecified,
Metric = "string",
},
},
},
StudyId = "string",
Location = "string",
Project = "string",
});
example, err := ml.NewStudy(ctx, "examplestudyResourceResourceFromMlv1", &ml.StudyArgs{
StudyConfig: &ml.GoogleCloudMlV1__StudyConfigArgs{
Parameters: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArray{
&ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArgs{
Parameter: pulumi.String("string"),
Type: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecTypeParameterTypeUnspecified,
CategoricalValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs{
Values: pulumi.StringArray{
pulumi.String("string"),
},
},
ChildParameterSpecs: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArray{
googleCloudMlV1_StudyConfig_ParameterSpec,
},
DiscreteValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs{
Values: pulumi.Float64Array{
pulumi.Float64(0),
},
},
DoubleValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs{
MaxValue: pulumi.Float64(0),
MinValue: pulumi.Float64(0),
},
IntegerValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs{
MaxValue: pulumi.String("string"),
MinValue: pulumi.String("string"),
},
ParentCategoricalValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs{
Values: pulumi.StringArray{
pulumi.String("string"),
},
},
ParentDiscreteValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs{
Values: pulumi.Float64Array{
pulumi.Float64(0),
},
},
ParentIntValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs{
Values: pulumi.StringArray{
pulumi.String("string"),
},
},
ScaleType: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleTypeScaleTypeUnspecified,
},
},
Algorithm: ml.GoogleCloudMlV1__StudyConfigAlgorithmAlgorithmUnspecified,
AutomatedStoppingConfig: &ml.GoogleCloudMlV1__AutomatedStoppingConfigArgs{
DecayCurveStoppingConfig: &ml.GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs{
UseElapsedTime: pulumi.Bool(false),
},
MedianAutomatedStoppingConfig: &ml.GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs{
UseElapsedTime: pulumi.Bool(false),
},
},
Metrics: ml.GoogleCloudMlV1_StudyConfig_MetricSpecArray{
&ml.GoogleCloudMlV1_StudyConfig_MetricSpecArgs{
Goal: ml.GoogleCloudMlV1_StudyConfig_MetricSpecGoalGoalTypeUnspecified,
Metric: pulumi.String("string"),
},
},
},
StudyId: pulumi.String("string"),
Location: pulumi.String("string"),
Project: pulumi.String("string"),
})
var examplestudyResourceResourceFromMlv1 = new Study("examplestudyResourceResourceFromMlv1", StudyArgs.builder()
.studyConfig(GoogleCloudMlV1__StudyConfigArgs.builder()
.parameters(GoogleCloudMlV1_StudyConfig_ParameterSpecArgs.builder()
.parameter("string")
.type("PARAMETER_TYPE_UNSPECIFIED")
.categoricalValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs.builder()
.values("string")
.build())
.childParameterSpecs(googleCloudMlV1_StudyConfig_ParameterSpec)
.discreteValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs.builder()
.values(0)
.build())
.doubleValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs.builder()
.maxValue(0)
.minValue(0)
.build())
.integerValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs.builder()
.maxValue("string")
.minValue("string")
.build())
.parentCategoricalValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs.builder()
.values("string")
.build())
.parentDiscreteValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs.builder()
.values(0)
.build())
.parentIntValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs.builder()
.values("string")
.build())
.scaleType("SCALE_TYPE_UNSPECIFIED")
.build())
.algorithm("ALGORITHM_UNSPECIFIED")
.automatedStoppingConfig(GoogleCloudMlV1__AutomatedStoppingConfigArgs.builder()
.decayCurveStoppingConfig(GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs.builder()
.useElapsedTime(false)
.build())
.medianAutomatedStoppingConfig(GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs.builder()
.useElapsedTime(false)
.build())
.build())
.metrics(GoogleCloudMlV1_StudyConfig_MetricSpecArgs.builder()
.goal("GOAL_TYPE_UNSPECIFIED")
.metric("string")
.build())
.build())
.studyId("string")
.location("string")
.project("string")
.build());
examplestudy_resource_resource_from_mlv1 = google_native.ml.v1.Study("examplestudyResourceResourceFromMlv1",
study_config={
"parameters": [{
"parameter": "string",
"type": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.PARAMETER_TYPE_UNSPECIFIED,
"categorical_value_spec": {
"values": ["string"],
},
"child_parameter_specs": [google_cloud_ml_v1__study_config__parameter_spec],
"discrete_value_spec": {
"values": [0],
},
"double_value_spec": {
"max_value": 0,
"min_value": 0,
},
"integer_value_spec": {
"max_value": "string",
"min_value": "string",
},
"parent_categorical_values": {
"values": ["string"],
},
"parent_discrete_values": {
"values": [0],
},
"parent_int_values": {
"values": ["string"],
},
"scale_type": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.SCALE_TYPE_UNSPECIFIED,
}],
"algorithm": google_native.ml.v1.GoogleCloudMlV1__StudyConfigAlgorithm.ALGORITHM_UNSPECIFIED,
"automated_stopping_config": {
"decay_curve_stopping_config": {
"use_elapsed_time": False,
},
"median_automated_stopping_config": {
"use_elapsed_time": False,
},
},
"metrics": [{
"goal": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GOAL_TYPE_UNSPECIFIED,
"metric": "string",
}],
},
study_id="string",
location="string",
project="string")
const examplestudyResourceResourceFromMlv1 = new google_native.ml.v1.Study("examplestudyResourceResourceFromMlv1", {
studyConfig: {
parameters: [{
parameter: "string",
type: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.ParameterTypeUnspecified,
categoricalValueSpec: {
values: ["string"],
},
childParameterSpecs: [googleCloudMlV1_StudyConfig_ParameterSpec],
discreteValueSpec: {
values: [0],
},
doubleValueSpec: {
maxValue: 0,
minValue: 0,
},
integerValueSpec: {
maxValue: "string",
minValue: "string",
},
parentCategoricalValues: {
values: ["string"],
},
parentDiscreteValues: {
values: [0],
},
parentIntValues: {
values: ["string"],
},
scaleType: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.ScaleTypeUnspecified,
}],
algorithm: google_native.ml.v1.GoogleCloudMlV1__StudyConfigAlgorithm.AlgorithmUnspecified,
automatedStoppingConfig: {
decayCurveStoppingConfig: {
useElapsedTime: false,
},
medianAutomatedStoppingConfig: {
useElapsedTime: false,
},
},
metrics: [{
goal: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GoalTypeUnspecified,
metric: "string",
}],
},
studyId: "string",
location: "string",
project: "string",
});
type: google-native:ml/v1:Study
properties:
location: string
project: string
studyConfig:
algorithm: ALGORITHM_UNSPECIFIED
automatedStoppingConfig:
decayCurveStoppingConfig:
useElapsedTime: false
medianAutomatedStoppingConfig:
useElapsedTime: false
metrics:
- goal: GOAL_TYPE_UNSPECIFIED
metric: string
parameters:
- categoricalValueSpec:
values:
- string
childParameterSpecs:
- ${googleCloudMlV1_StudyConfig_ParameterSpec}
discreteValueSpec:
values:
- 0
doubleValueSpec:
maxValue: 0
minValue: 0
integerValueSpec:
maxValue: string
minValue: string
parameter: string
parentCategoricalValues:
values:
- string
parentDiscreteValues:
values:
- 0
parentIntValues:
values:
- string
scaleType: SCALE_TYPE_UNSPECIFIED
type: PARAMETER_TYPE_UNSPECIFIED
studyId: string
Study Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Study resource accepts the following input properties:
- Study
Config Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Study Config - Configuration of the study.
- Study
Id string - Required. The ID to use for the study, which will become the final component of the study's resource name.
- Location string
- Project string
- Study
Config GoogleCloud Ml V1__Study Config Args - Configuration of the study.
- Study
Id string - Required. The ID to use for the study, which will become the final component of the study's resource name.
- Location string
- Project string
- study
Config GoogleCloud Ml V1__Study Config - Configuration of the study.
- study
Id String - Required. The ID to use for the study, which will become the final component of the study's resource name.
- location String
- project String
- study
Config GoogleCloud Ml V1__Study Config - Configuration of the study.
- study
Id string - Required. The ID to use for the study, which will become the final component of the study's resource name.
- location string
- project string
- study_
config GoogleCloud Ml V1Study Config Args - Configuration of the study.
- study_
id str - Required. The ID to use for the study, which will become the final component of the study's resource name.
- location str
- project str
- study
Config Property Map - Configuration of the study.
- study
Id String - Required. The ID to use for the study, which will become the final component of the study's resource name.
- location String
- project String
Outputs
All input properties are implicitly available as output properties. Additionally, the Study resource produces the following output properties:
- Create
Time string - Time at which the study was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- Inactive
Reason string - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- Name string
- The name of a study.
- State string
- The detailed state of a study.
- Create
Time string - Time at which the study was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- Inactive
Reason string - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- Name string
- The name of a study.
- State string
- The detailed state of a study.
- create
Time String - Time at which the study was created.
- id String
- The provider-assigned unique ID for this managed resource.
- inactive
Reason String - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name String
- The name of a study.
- state String
- The detailed state of a study.
- create
Time string - Time at which the study was created.
- id string
- The provider-assigned unique ID for this managed resource.
- inactive
Reason string - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name string
- The name of a study.
- state string
- The detailed state of a study.
- create_
time str - Time at which the study was created.
- id str
- The provider-assigned unique ID for this managed resource.
- inactive_
reason str - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name str
- The name of a study.
- state str
- The detailed state of a study.
- create
Time String - Time at which the study was created.
- id String
- The provider-assigned unique ID for this managed resource.
- inactive
Reason String - A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name String
- The name of a study.
- state String
- The detailed state of a study.
Supporting Types
GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfig, GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs
- Use
Elapsed boolTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- Use
Elapsed boolTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed BooleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed booleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use_
elapsed_ booltime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed BooleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigResponse, GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigResponseArgs
- Use
Elapsed boolTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- Use
Elapsed boolTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed BooleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed booleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use_
elapsed_ booltime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use
Elapsed BooleanTime - If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfig, GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs
- Use
Elapsed boolTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- Use
Elapsed boolTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed BooleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed booleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use_
elapsed_ booltime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed BooleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigResponse, GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigResponseArgs
- Use
Elapsed boolTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- Use
Elapsed boolTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed BooleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed booleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use_
elapsed_ booltime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use
Elapsed BooleanTime - If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs
- Values List<string>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- Values []string
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values List<String>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values string[]
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values Sequence[str]
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values List<String>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecResponseArgs
- Values List<string>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- Values []string
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values List<String>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values string[]
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values Sequence[str]
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
- values List<String>
- Must be specified if type is
CATEGORICAL
. The list of possible categories.
GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs
- Values List<double>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- Values []float64
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Double>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values number[]
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values Sequence[float]
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Number>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecResponseArgs
- Values List<double>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- Values []float64
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Double>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values number[]
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values Sequence[float]
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Number>
- Must be specified if type is
DISCRETE
. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs
GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecResponseArgs
GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs
GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecResponseArgs
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs
- Values List<string>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- Values []string
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values string[]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecResponseArgs
- Values List<string>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- Values []string
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values string[]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in
categorical_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs
- Values List<double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- Values []float64
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values List<Double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values number[]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values Sequence[float]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values List<Number>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecResponseArgs
- Values List<double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- Values []float64
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values List<Double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values number[]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values Sequence[float]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
- values List<Number>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in
discrete_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs
- Values List<string>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- Values []string
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values string[]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecResponseArgs
- Values List<string>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- Values []string
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values string[]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in
integer_value_spec
of parent parameter.
GoogleCloudMlV1_StudyConfig_MetricSpec, GoogleCloudMlV1_StudyConfig_MetricSpecArgs
- Goal
Pulumi.
Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Metric Spec Goal - The optimization goal of the metric.
- Metric string
- The name of the metric.
- Goal
Google
Cloud Ml V1_Study Config_Metric Spec Goal - The optimization goal of the metric.
- Metric string
- The name of the metric.
- goal
Google
Cloud Ml V1_Study Config_Metric Spec Goal - The optimization goal of the metric.
- metric String
- The name of the metric.
- goal
Google
Cloud Ml V1_Study Config_Metric Spec Goal - The optimization goal of the metric.
- metric string
- The name of the metric.
- goal
Google
Cloud Ml V1Study Config_Metric Spec Goal - The optimization goal of the metric.
- metric str
- The name of the metric.
- goal "GOAL_TYPE_UNSPECIFIED" | "MAXIMIZE" | "MINIMIZE"
- The optimization goal of the metric.
- metric String
- The name of the metric.
GoogleCloudMlV1_StudyConfig_MetricSpecGoal, GoogleCloudMlV1_StudyConfig_MetricSpecGoalArgs
- Goal
Type Unspecified - GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- Google
Cloud Ml V1_Study Config_Metric Spec Goal Goal Type Unspecified - GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Google
Cloud Ml V1_Study Config_Metric Spec Goal Maximize - MAXIMIZEMaximize the goal metric.
- Google
Cloud Ml V1_Study Config_Metric Spec Goal Minimize - MINIMIZEMinimize the goal metric.
- Goal
Type Unspecified - GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- Goal
Type Unspecified - GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- GOAL_TYPE_UNSPECIFIED
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- MAXIMIZE
- MAXIMIZEMaximize the goal metric.
- MINIMIZE
- MINIMIZEMinimize the goal metric.
- "GOAL_TYPE_UNSPECIFIED"
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- "MAXIMIZE"
- MAXIMIZEMaximize the goal metric.
- "MINIMIZE"
- MINIMIZEMinimize the goal metric.
GoogleCloudMlV1_StudyConfig_MetricSpecResponse, GoogleCloudMlV1_StudyConfig_MetricSpecResponseArgs
GoogleCloudMlV1_StudyConfig_ParameterSpec, GoogleCloudMlV1_StudyConfig_ParameterSpecArgs
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Type
Pulumi.
Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Parameter Spec Type - The type of the parameter.
- Categorical
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec - The value spec for a 'CATEGORICAL' parameter.
- Child
Parameter List<Pulumi.Specs Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec> - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- Discrete
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec - The value spec for a 'DISCRETE' parameter.
- Double
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Double Value Spec - The value spec for a 'DOUBLE' parameter.
- Integer
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec - The value spec for an 'INTEGER' parameter.
- Parent
Categorical Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec - Parent
Discrete Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec - Parent
Int Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec - Scale
Type Pulumi.Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Parameter Spec Scale Type - How the parameter should be scaled. Leave unset for categorical parameters.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Type
Google
Cloud Ml V1_Study Config_Parameter Spec Type - The type of the parameter.
- Categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec - The value spec for a 'CATEGORICAL' parameter.
- Child
Parameter []GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- Discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec - The value spec for a 'DISCRETE' parameter.
- Double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec - The value spec for a 'DOUBLE' parameter.
- Integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec - The value spec for an 'INTEGER' parameter.
- Parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec - Parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec - Parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec - Scale
Type GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type - How the parameter should be scaled. Leave unset for categorical parameters.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- type
Google
Cloud Ml V1_Study Config_Parameter Spec Type - The type of the parameter.
- categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter List<GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec> - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec - The value spec for a 'DISCRETE' parameter.
- double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec - The value spec for a 'DOUBLE' parameter.
- integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec - The value spec for an 'INTEGER' parameter.
- parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec - parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec - parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec - scale
Type GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type - How the parameter should be scaled. Leave unset for categorical parameters.
- parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- type
Google
Cloud Ml V1_Study Config_Parameter Spec Type - The type of the parameter.
- categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec[] - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec - The value spec for a 'DISCRETE' parameter.
- double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec - The value spec for a 'DOUBLE' parameter.
- integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec - The value spec for an 'INTEGER' parameter.
- parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec - parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec - parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec - scale
Type GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type - How the parameter should be scaled. Leave unset for categorical parameters.
- parameter str
- The parameter name must be unique amongst all ParameterSpecs.
- type
Google
Cloud Ml V1Study Config_Parameter Spec Type - The type of the parameter.
- categorical_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Categorical Value Spec - The value spec for a 'CATEGORICAL' parameter.
- child_
parameter_ Sequence[Googlespecs Cloud Ml V1Study Config_Parameter Spec] - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Discrete Value Spec - The value spec for a 'DISCRETE' parameter.
- double_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Double Value Spec - The value spec for a 'DOUBLE' parameter.
- integer_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Integer Value Spec - The value spec for an 'INTEGER' parameter.
- parent_
categorical_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Categorical Value Spec - parent_
discrete_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Discrete Value Spec - parent_
int_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Int Value Spec - scale_
type GoogleCloud Ml V1Study Config_Parameter Spec Scale Type - How the parameter should be scaled. Leave unset for categorical parameters.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- type "PARAMETER_TYPE_UNSPECIFIED" | "DOUBLE" | "INTEGER" | "CATEGORICAL" | "DISCRETE"
- The type of the parameter.
- categorical
Value Property MapSpec - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter List<Property Map>Specs - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value Property MapSpec - The value spec for a 'DISCRETE' parameter.
- double
Value Property MapSpec - The value spec for a 'DOUBLE' parameter.
- integer
Value Property MapSpec - The value spec for an 'INTEGER' parameter.
- parent
Categorical Property MapValues - parent
Discrete Property MapValues - parent
Int Property MapValues - scale
Type "SCALE_TYPE_UNSPECIFIED" | "UNIT_LINEAR_SCALE" | "UNIT_LOG_SCALE" | "UNIT_REVERSE_LOG_SCALE" - How the parameter should be scaled. Leave unset for categorical parameters.
GoogleCloudMlV1_StudyConfig_ParameterSpecResponse, GoogleCloudMlV1_StudyConfig_ParameterSpecResponseArgs
- Categorical
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response - The value spec for a 'CATEGORICAL' parameter.
- Child
Parameter List<Pulumi.Specs Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec Response> - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- Discrete
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response - The value spec for a 'DISCRETE' parameter.
- Double
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response - The value spec for a 'DOUBLE' parameter.
- Integer
Value Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response - The value spec for an 'INTEGER' parameter.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Parent
Categorical Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response - Parent
Discrete Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response - Parent
Int Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response - Scale
Type string - How the parameter should be scaled. Leave unset for categorical parameters.
- Type string
- The type of the parameter.
- Categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response - The value spec for a 'CATEGORICAL' parameter.
- Child
Parameter []GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- Discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response - The value spec for a 'DISCRETE' parameter.
- Double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response - The value spec for a 'DOUBLE' parameter.
- Integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response - The value spec for an 'INTEGER' parameter.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response - Parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response - Parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response - Scale
Type string - How the parameter should be scaled. Leave unset for categorical parameters.
- Type string
- The type of the parameter.
- categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter List<GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response> - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response - The value spec for a 'DISCRETE' parameter.
- double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response - The value spec for a 'DOUBLE' parameter.
- integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response - The value spec for an 'INTEGER' parameter.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response - parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response - parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response - scale
Type String - How the parameter should be scaled. Leave unset for categorical parameters.
- type String
- The type of the parameter.
- categorical
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response[] - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response - The value spec for a 'DISCRETE' parameter.
- double
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response - The value spec for a 'DOUBLE' parameter.
- integer
Value GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response - The value spec for an 'INTEGER' parameter.
- parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- parent
Categorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response - parent
Discrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response - parent
Int GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response - scale
Type string - How the parameter should be scaled. Leave unset for categorical parameters.
- type string
- The type of the parameter.
- categorical_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Categorical Value Spec Response - The value spec for a 'CATEGORICAL' parameter.
- child_
parameter_ Sequence[Googlespecs Cloud Ml V1Study Config_Parameter Spec Response] - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Discrete Value Spec Response - The value spec for a 'DISCRETE' parameter.
- double_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Double Value Spec Response - The value spec for a 'DOUBLE' parameter.
- integer_
value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Integer Value Spec Response - The value spec for an 'INTEGER' parameter.
- parameter str
- The parameter name must be unique amongst all ParameterSpecs.
- parent_
categorical_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Categorical Value Spec Response - parent_
discrete_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Discrete Value Spec Response - parent_
int_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Int Value Spec Response - scale_
type str - How the parameter should be scaled. Leave unset for categorical parameters.
- type str
- The type of the parameter.
- categorical
Value Property MapSpec - The value spec for a 'CATEGORICAL' parameter.
- child
Parameter List<Property Map>Specs - A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete
Value Property MapSpec - The value spec for a 'DISCRETE' parameter.
- double
Value Property MapSpec - The value spec for a 'DOUBLE' parameter.
- integer
Value Property MapSpec - The value spec for an 'INTEGER' parameter.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- parent
Categorical Property MapValues - parent
Discrete Property MapValues - parent
Int Property MapValues - scale
Type String - How the parameter should be scaled. Leave unset for categorical parameters.
- type String
- The type of the parameter.
GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType, GoogleCloudMlV1_StudyConfig_ParameterSpecScaleTypeArgs
- Scale
Type Unspecified - SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- Unit
Linear Scale - UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- Unit
Log Scale - UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- Unit
Reverse Log Scale - UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- Google
Cloud Ml V1_Study Config_Parameter Spec Scale Type Scale Type Unspecified - SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- Google
Cloud Ml V1_Study Config_Parameter Spec Scale Type Unit Linear Scale - UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- Google
Cloud Ml V1_Study Config_Parameter Spec Scale Type Unit Log Scale - UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- Google
Cloud Ml V1_Study Config_Parameter Spec Scale Type Unit Reverse Log Scale - UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- Scale
Type Unspecified - SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- Unit
Linear Scale - UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- Unit
Log Scale - UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- Unit
Reverse Log Scale - UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- Scale
Type Unspecified - SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- Unit
Linear Scale - UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- Unit
Log Scale - UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- Unit
Reverse Log Scale - UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- SCALE_TYPE_UNSPECIFIED
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- UNIT_LINEAR_SCALE
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- UNIT_LOG_SCALE
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UNIT_REVERSE_LOG_SCALE
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- "SCALE_TYPE_UNSPECIFIED"
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- "UNIT_LINEAR_SCALE"
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- "UNIT_LOG_SCALE"
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- "UNIT_REVERSE_LOG_SCALE"
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
GoogleCloudMlV1_StudyConfig_ParameterSpecType, GoogleCloudMlV1_StudyConfig_ParameterSpecTypeArgs
- Parameter
Type Unspecified - PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
- Google
Cloud Ml V1_Study Config_Parameter Spec Type Parameter Type Unspecified - PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Google
Cloud Ml V1_Study Config_Parameter Spec Type Double - DOUBLEType for real-valued parameters.
- Google
Cloud Ml V1_Study Config_Parameter Spec Type Integer - INTEGERType for integral parameters.
- Google
Cloud Ml V1_Study Config_Parameter Spec Type Categorical - CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Google
Cloud Ml V1_Study Config_Parameter Spec Type Discrete - DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
- Parameter
Type Unspecified - PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
- Parameter
Type Unspecified - PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
- PARAMETER_TYPE_UNSPECIFIED
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- DOUBLE
- DOUBLEType for real-valued parameters.
- INTEGER
- INTEGERType for integral parameters.
- CATEGORICAL
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- DISCRETE
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
- "PARAMETER_TYPE_UNSPECIFIED"
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- "DOUBLE"
- DOUBLEType for real-valued parameters.
- "INTEGER"
- INTEGERType for integral parameters.
- "CATEGORICAL"
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- "DISCRETE"
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If
type==DISCRETE
, feasible_points must be provided, and {min_value
,max_value
} will be ignored.
GoogleCloudMlV1__AutomatedStoppingConfig, GoogleCloudMlV1__AutomatedStoppingConfigArgs
GoogleCloudMlV1__AutomatedStoppingConfigResponse, GoogleCloudMlV1__AutomatedStoppingConfigResponseArgs
GoogleCloudMlV1__StudyConfig, GoogleCloudMlV1__StudyConfigArgs
- Parameters
List<Pulumi.
Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec> - The set of parameters to tune.
- Algorithm
Pulumi.
Google Native. Ml. V1. Google Cloud Ml V1__Study Config Algorithm - The search algorithm specified for the study.
- Automated
Stopping Pulumi.Config Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Automated Stopping Config - Configuration for automated stopping of unpromising Trials.
- Metrics
List<Pulumi.
Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Metric Spec> - Metric specs for the study.
- Parameters
[]Google
Cloud Ml V1_Study Config_Parameter Spec - The set of parameters to tune.
- Algorithm
Google
Cloud Ml V1__Study Config Algorithm - The search algorithm specified for the study.
- Automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config - Configuration for automated stopping of unpromising Trials.
- Metrics
[]Google
Cloud Ml V1_Study Config_Metric Spec - Metric specs for the study.
- parameters
List<Google
Cloud Ml V1_Study Config_Parameter Spec> - The set of parameters to tune.
- algorithm
Google
Cloud Ml V1__Study Config Algorithm - The search algorithm specified for the study.
- automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config - Configuration for automated stopping of unpromising Trials.
- metrics
List<Google
Cloud Ml V1_Study Config_Metric Spec> - Metric specs for the study.
- parameters
Google
Cloud Ml V1_Study Config_Parameter Spec[] - The set of parameters to tune.
- algorithm
Google
Cloud Ml V1__Study Config Algorithm - The search algorithm specified for the study.
- automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config - Configuration for automated stopping of unpromising Trials.
- metrics
Google
Cloud Ml V1_Study Config_Metric Spec[] - Metric specs for the study.
- parameters
Sequence[Google
Cloud Ml V1Study Config_Parameter Spec] - The set of parameters to tune.
- algorithm
Google
Cloud Ml V1Study Config Algorithm - The search algorithm specified for the study.
- automated_
stopping_ Googleconfig Cloud Ml V1Automated Stopping Config - Configuration for automated stopping of unpromising Trials.
- metrics
Sequence[Google
Cloud Ml V1Study Config_Metric Spec] - Metric specs for the study.
- parameters List<Property Map>
- The set of parameters to tune.
- algorithm "ALGORITHM_UNSPECIFIED" | "GAUSSIAN_PROCESS_BANDIT" | "GRID_SEARCH" | "RANDOM_SEARCH"
- The search algorithm specified for the study.
- automated
Stopping Property MapConfig - Configuration for automated stopping of unpromising Trials.
- metrics List<Property Map>
- Metric specs for the study.
GoogleCloudMlV1__StudyConfigAlgorithm, GoogleCloudMlV1__StudyConfigAlgorithmArgs
- Algorithm
Unspecified - ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- Gaussian
Process Bandit - GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- Grid
Search - GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - Random
Search - RANDOM_SEARCHSimple random search within the feasible space.
- Google
Cloud Ml V1__Study Config Algorithm Algorithm Unspecified - ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- Google
Cloud Ml V1__Study Config Algorithm Gaussian Process Bandit - GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- Google
Cloud Ml V1__Study Config Algorithm Grid Search - GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - Google
Cloud Ml V1__Study Config Algorithm Random Search - RANDOM_SEARCHSimple random search within the feasible space.
- Algorithm
Unspecified - ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- Gaussian
Process Bandit - GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- Grid
Search - GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - Random
Search - RANDOM_SEARCHSimple random search within the feasible space.
- Algorithm
Unspecified - ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- Gaussian
Process Bandit - GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- Grid
Search - GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - Random
Search - RANDOM_SEARCHSimple random search within the feasible space.
- ALGORITHM_UNSPECIFIED
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GAUSSIAN_PROCESS_BANDIT
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GRID_SEARCH
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - RANDOM_SEARCH
- RANDOM_SEARCHSimple random search within the feasible space.
- "ALGORITHM_UNSPECIFIED"
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- "GAUSSIAN_PROCESS_BANDIT"
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- "GRID_SEARCH"
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be
INTEGER
,CATEGORICAL
, orDISCRETE
. - "RANDOM_SEARCH"
- RANDOM_SEARCHSimple random search within the feasible space.
GoogleCloudMlV1__StudyConfigResponse, GoogleCloudMlV1__StudyConfigResponseArgs
- Algorithm string
- The search algorithm specified for the study.
- Automated
Stopping Pulumi.Config Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Automated Stopping Config Response - Configuration for automated stopping of unpromising Trials.
- Metrics
List<Pulumi.
Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Metric Spec Response> - Metric specs for the study.
- Parameters
List<Pulumi.
Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec Response> - The set of parameters to tune.
- Algorithm string
- The search algorithm specified for the study.
- Automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response - Configuration for automated stopping of unpromising Trials.
- Metrics
[]Google
Cloud Ml V1_Study Config_Metric Spec Response - Metric specs for the study.
- Parameters
[]Google
Cloud Ml V1_Study Config_Parameter Spec Response - The set of parameters to tune.
- algorithm String
- The search algorithm specified for the study.
- automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response - Configuration for automated stopping of unpromising Trials.
- metrics
List<Google
Cloud Ml V1_Study Config_Metric Spec Response> - Metric specs for the study.
- parameters
List<Google
Cloud Ml V1_Study Config_Parameter Spec Response> - The set of parameters to tune.
- algorithm string
- The search algorithm specified for the study.
- automated
Stopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response - Configuration for automated stopping of unpromising Trials.
- metrics
Google
Cloud Ml V1_Study Config_Metric Spec Response[] - Metric specs for the study.
- parameters
Google
Cloud Ml V1_Study Config_Parameter Spec Response[] - The set of parameters to tune.
- algorithm str
- The search algorithm specified for the study.
- automated_
stopping_ Googleconfig Cloud Ml V1Automated Stopping Config Response - Configuration for automated stopping of unpromising Trials.
- metrics
Sequence[Google
Cloud Ml V1Study Config_Metric Spec Response] - Metric specs for the study.
- parameters
Sequence[Google
Cloud Ml V1Study Config_Parameter Spec Response] - The set of parameters to tune.
- algorithm String
- The search algorithm specified for the study.
- automated
Stopping Property MapConfig - Configuration for automated stopping of unpromising Trials.
- metrics List<Property Map>
- Metric specs for the study.
- parameters List<Property Map>
- The set of parameters to tune.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0
Google Cloud Native is in preview. Google Cloud Classic is fully supported.