Google Cloud Native is in preview. Google Cloud Classic is fully supported.
google-native.dataproc/v1.SessionTemplate
Explore with Pulumi AI
Google Cloud Native is in preview. Google Cloud Classic is fully supported.
Create a session template synchronously.
Create SessionTemplate Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new SessionTemplate(name: string, args?: SessionTemplateArgs, opts?: CustomResourceOptions);
@overload
def SessionTemplate(resource_name: str,
args: Optional[SessionTemplateArgs] = None,
opts: Optional[ResourceOptions] = None)
@overload
def SessionTemplate(resource_name: str,
opts: Optional[ResourceOptions] = None,
description: Optional[str] = None,
environment_config: Optional[EnvironmentConfigArgs] = None,
jupyter_session: Optional[JupyterConfigArgs] = None,
labels: Optional[Mapping[str, str]] = None,
location: Optional[str] = None,
name: Optional[str] = None,
project: Optional[str] = None,
runtime_config: Optional[RuntimeConfigArgs] = None)
func NewSessionTemplate(ctx *Context, name string, args *SessionTemplateArgs, opts ...ResourceOption) (*SessionTemplate, error)
public SessionTemplate(string name, SessionTemplateArgs? args = null, CustomResourceOptions? opts = null)
public SessionTemplate(String name, SessionTemplateArgs args)
public SessionTemplate(String name, SessionTemplateArgs args, CustomResourceOptions options)
type: google-native:dataproc/v1:SessionTemplate
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args SessionTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args SessionTemplateArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args SessionTemplateArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args SessionTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args SessionTemplateArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var sessionTemplateResource = new GoogleNative.Dataproc.V1.SessionTemplate("sessionTemplateResource", new()
{
Description = "string",
EnvironmentConfig = new GoogleNative.Dataproc.V1.Inputs.EnvironmentConfigArgs
{
ExecutionConfig = new GoogleNative.Dataproc.V1.Inputs.ExecutionConfigArgs
{
IdleTtl = "string",
KmsKey = "string",
NetworkTags = new[]
{
"string",
},
NetworkUri = "string",
ServiceAccount = "string",
StagingBucket = "string",
SubnetworkUri = "string",
Ttl = "string",
},
PeripheralsConfig = new GoogleNative.Dataproc.V1.Inputs.PeripheralsConfigArgs
{
MetastoreService = "string",
SparkHistoryServerConfig = new GoogleNative.Dataproc.V1.Inputs.SparkHistoryServerConfigArgs
{
DataprocCluster = "string",
},
},
},
JupyterSession = new GoogleNative.Dataproc.V1.Inputs.JupyterConfigArgs
{
DisplayName = "string",
Kernel = GoogleNative.Dataproc.V1.JupyterConfigKernel.KernelUnspecified,
},
Labels =
{
{ "string", "string" },
},
Location = "string",
Name = "string",
Project = "string",
RuntimeConfig = new GoogleNative.Dataproc.V1.Inputs.RuntimeConfigArgs
{
ContainerImage = "string",
Properties =
{
{ "string", "string" },
},
RepositoryConfig = new GoogleNative.Dataproc.V1.Inputs.RepositoryConfigArgs
{
PypiRepositoryConfig = new GoogleNative.Dataproc.V1.Inputs.PyPiRepositoryConfigArgs
{
PypiRepository = "string",
},
},
Version = "string",
},
});
example, err := dataproc.NewSessionTemplate(ctx, "sessionTemplateResource", &dataproc.SessionTemplateArgs{
Description: pulumi.String("string"),
EnvironmentConfig: &dataproc.EnvironmentConfigArgs{
ExecutionConfig: &dataproc.ExecutionConfigArgs{
IdleTtl: pulumi.String("string"),
KmsKey: pulumi.String("string"),
NetworkTags: pulumi.StringArray{
pulumi.String("string"),
},
NetworkUri: pulumi.String("string"),
ServiceAccount: pulumi.String("string"),
StagingBucket: pulumi.String("string"),
SubnetworkUri: pulumi.String("string"),
Ttl: pulumi.String("string"),
},
PeripheralsConfig: &dataproc.PeripheralsConfigArgs{
MetastoreService: pulumi.String("string"),
SparkHistoryServerConfig: &dataproc.SparkHistoryServerConfigArgs{
DataprocCluster: pulumi.String("string"),
},
},
},
JupyterSession: &dataproc.JupyterConfigArgs{
DisplayName: pulumi.String("string"),
Kernel: dataproc.JupyterConfigKernelKernelUnspecified,
},
Labels: pulumi.StringMap{
"string": pulumi.String("string"),
},
Location: pulumi.String("string"),
Name: pulumi.String("string"),
Project: pulumi.String("string"),
RuntimeConfig: &dataproc.RuntimeConfigArgs{
ContainerImage: pulumi.String("string"),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
RepositoryConfig: &dataproc.RepositoryConfigArgs{
PypiRepositoryConfig: &dataproc.PyPiRepositoryConfigArgs{
PypiRepository: pulumi.String("string"),
},
},
Version: pulumi.String("string"),
},
})
var sessionTemplateResource = new SessionTemplate("sessionTemplateResource", SessionTemplateArgs.builder()
.description("string")
.environmentConfig(EnvironmentConfigArgs.builder()
.executionConfig(ExecutionConfigArgs.builder()
.idleTtl("string")
.kmsKey("string")
.networkTags("string")
.networkUri("string")
.serviceAccount("string")
.stagingBucket("string")
.subnetworkUri("string")
.ttl("string")
.build())
.peripheralsConfig(PeripheralsConfigArgs.builder()
.metastoreService("string")
.sparkHistoryServerConfig(SparkHistoryServerConfigArgs.builder()
.dataprocCluster("string")
.build())
.build())
.build())
.jupyterSession(JupyterConfigArgs.builder()
.displayName("string")
.kernel("KERNEL_UNSPECIFIED")
.build())
.labels(Map.of("string", "string"))
.location("string")
.name("string")
.project("string")
.runtimeConfig(RuntimeConfigArgs.builder()
.containerImage("string")
.properties(Map.of("string", "string"))
.repositoryConfig(RepositoryConfigArgs.builder()
.pypiRepositoryConfig(PyPiRepositoryConfigArgs.builder()
.pypiRepository("string")
.build())
.build())
.version("string")
.build())
.build());
session_template_resource = google_native.dataproc.v1.SessionTemplate("sessionTemplateResource",
description="string",
environment_config={
"execution_config": {
"idle_ttl": "string",
"kms_key": "string",
"network_tags": ["string"],
"network_uri": "string",
"service_account": "string",
"staging_bucket": "string",
"subnetwork_uri": "string",
"ttl": "string",
},
"peripherals_config": {
"metastore_service": "string",
"spark_history_server_config": {
"dataproc_cluster": "string",
},
},
},
jupyter_session={
"display_name": "string",
"kernel": google_native.dataproc.v1.JupyterConfigKernel.KERNEL_UNSPECIFIED,
},
labels={
"string": "string",
},
location="string",
name="string",
project="string",
runtime_config={
"container_image": "string",
"properties": {
"string": "string",
},
"repository_config": {
"pypi_repository_config": {
"pypi_repository": "string",
},
},
"version": "string",
})
const sessionTemplateResource = new google_native.dataproc.v1.SessionTemplate("sessionTemplateResource", {
description: "string",
environmentConfig: {
executionConfig: {
idleTtl: "string",
kmsKey: "string",
networkTags: ["string"],
networkUri: "string",
serviceAccount: "string",
stagingBucket: "string",
subnetworkUri: "string",
ttl: "string",
},
peripheralsConfig: {
metastoreService: "string",
sparkHistoryServerConfig: {
dataprocCluster: "string",
},
},
},
jupyterSession: {
displayName: "string",
kernel: google_native.dataproc.v1.JupyterConfigKernel.KernelUnspecified,
},
labels: {
string: "string",
},
location: "string",
name: "string",
project: "string",
runtimeConfig: {
containerImage: "string",
properties: {
string: "string",
},
repositoryConfig: {
pypiRepositoryConfig: {
pypiRepository: "string",
},
},
version: "string",
},
});
type: google-native:dataproc/v1:SessionTemplate
properties:
description: string
environmentConfig:
executionConfig:
idleTtl: string
kmsKey: string
networkTags:
- string
networkUri: string
serviceAccount: string
stagingBucket: string
subnetworkUri: string
ttl: string
peripheralsConfig:
metastoreService: string
sparkHistoryServerConfig:
dataprocCluster: string
jupyterSession:
displayName: string
kernel: KERNEL_UNSPECIFIED
labels:
string: string
location: string
name: string
project: string
runtimeConfig:
containerImage: string
properties:
string: string
repositoryConfig:
pypiRepositoryConfig:
pypiRepository: string
version: string
SessionTemplate Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The SessionTemplate resource accepts the following input properties:
- Description string
- Optional. Brief description of the template.
- Environment
Config Pulumi.Google Native. Dataproc. V1. Inputs. Environment Config - Optional. Environment configuration for session execution.
- Jupyter
Session Pulumi.Google Native. Dataproc. V1. Inputs. Jupyter Config - Optional. Jupyter session config.
- Labels Dictionary<string, string>
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- Location string
- Name string
- The resource name of the session template.
- Project string
- Runtime
Config Pulumi.Google Native. Dataproc. V1. Inputs. Runtime Config - Optional. Runtime configuration for session execution.
- Description string
- Optional. Brief description of the template.
- Environment
Config EnvironmentConfig Args - Optional. Environment configuration for session execution.
- Jupyter
Session JupyterConfig Args - Optional. Jupyter session config.
- Labels map[string]string
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- Location string
- Name string
- The resource name of the session template.
- Project string
- Runtime
Config RuntimeConfig Args - Optional. Runtime configuration for session execution.
- description String
- Optional. Brief description of the template.
- environment
Config EnvironmentConfig - Optional. Environment configuration for session execution.
- jupyter
Session JupyterConfig - Optional. Jupyter session config.
- labels Map<String,String>
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- location String
- name String
- The resource name of the session template.
- project String
- runtime
Config RuntimeConfig - Optional. Runtime configuration for session execution.
- description string
- Optional. Brief description of the template.
- environment
Config EnvironmentConfig - Optional. Environment configuration for session execution.
- jupyter
Session JupyterConfig - Optional. Jupyter session config.
- labels {[key: string]: string}
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- location string
- name string
- The resource name of the session template.
- project string
- runtime
Config RuntimeConfig - Optional. Runtime configuration for session execution.
- description str
- Optional. Brief description of the template.
- environment_
config EnvironmentConfig Args - Optional. Environment configuration for session execution.
- jupyter_
session JupyterConfig Args - Optional. Jupyter session config.
- labels Mapping[str, str]
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- location str
- name str
- The resource name of the session template.
- project str
- runtime_
config RuntimeConfig Args - Optional. Runtime configuration for session execution.
- description String
- Optional. Brief description of the template.
- environment
Config Property Map - Optional. Environment configuration for session execution.
- jupyter
Session Property Map - Optional. Jupyter session config.
- labels Map<String>
- Optional. Labels to associate with sessions created using this template. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values can be empty, but, if present, must contain 1 to 63 characters and conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with a session.
- location String
- name String
- The resource name of the session template.
- project String
- runtime
Config Property Map - Optional. Runtime configuration for session execution.
Outputs
All input properties are implicitly available as output properties. Additionally, the SessionTemplate resource produces the following output properties:
- Create
Time string - The time when the template was created.
- Creator string
- The email address of the user who created the template.
- Id string
- The provider-assigned unique ID for this managed resource.
- Update
Time string - The time the template was last updated.
- Uuid string
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
- Create
Time string - The time when the template was created.
- Creator string
- The email address of the user who created the template.
- Id string
- The provider-assigned unique ID for this managed resource.
- Update
Time string - The time the template was last updated.
- Uuid string
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
- create
Time String - The time when the template was created.
- creator String
- The email address of the user who created the template.
- id String
- The provider-assigned unique ID for this managed resource.
- update
Time String - The time the template was last updated.
- uuid String
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
- create
Time string - The time when the template was created.
- creator string
- The email address of the user who created the template.
- id string
- The provider-assigned unique ID for this managed resource.
- update
Time string - The time the template was last updated.
- uuid string
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
- create_
time str - The time when the template was created.
- creator str
- The email address of the user who created the template.
- id str
- The provider-assigned unique ID for this managed resource.
- update_
time str - The time the template was last updated.
- uuid str
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
- create
Time String - The time when the template was created.
- creator String
- The email address of the user who created the template.
- id String
- The provider-assigned unique ID for this managed resource.
- update
Time String - The time the template was last updated.
- uuid String
- A session template UUID (Unique Universal Identifier). The service generates this value when it creates the session template.
Supporting Types
EnvironmentConfig, EnvironmentConfigArgs
- Execution
Config Pulumi.Google Native. Dataproc. V1. Inputs. Execution Config - Optional. Execution configuration for a workload.
- Peripherals
Config Pulumi.Google Native. Dataproc. V1. Inputs. Peripherals Config - Optional. Peripherals configuration that workload has access to.
- Execution
Config ExecutionConfig - Optional. Execution configuration for a workload.
- Peripherals
Config PeripheralsConfig - Optional. Peripherals configuration that workload has access to.
- execution
Config ExecutionConfig - Optional. Execution configuration for a workload.
- peripherals
Config PeripheralsConfig - Optional. Peripherals configuration that workload has access to.
- execution
Config ExecutionConfig - Optional. Execution configuration for a workload.
- peripherals
Config PeripheralsConfig - Optional. Peripherals configuration that workload has access to.
- execution_
config ExecutionConfig - Optional. Execution configuration for a workload.
- peripherals_
config PeripheralsConfig - Optional. Peripherals configuration that workload has access to.
- execution
Config Property Map - Optional. Execution configuration for a workload.
- peripherals
Config Property Map - Optional. Peripherals configuration that workload has access to.
EnvironmentConfigResponse, EnvironmentConfigResponseArgs
- Execution
Config Pulumi.Google Native. Dataproc. V1. Inputs. Execution Config Response - Optional. Execution configuration for a workload.
- Peripherals
Config Pulumi.Google Native. Dataproc. V1. Inputs. Peripherals Config Response - Optional. Peripherals configuration that workload has access to.
- Execution
Config ExecutionConfig Response - Optional. Execution configuration for a workload.
- Peripherals
Config PeripheralsConfig Response - Optional. Peripherals configuration that workload has access to.
- execution
Config ExecutionConfig Response - Optional. Execution configuration for a workload.
- peripherals
Config PeripheralsConfig Response - Optional. Peripherals configuration that workload has access to.
- execution
Config ExecutionConfig Response - Optional. Execution configuration for a workload.
- peripherals
Config PeripheralsConfig Response - Optional. Peripherals configuration that workload has access to.
- execution_
config ExecutionConfig Response - Optional. Execution configuration for a workload.
- peripherals_
config PeripheralsConfig Response - Optional. Peripherals configuration that workload has access to.
- execution
Config Property Map - Optional. Execution configuration for a workload.
- peripherals
Config Property Map - Optional. Peripherals configuration that workload has access to.
ExecutionConfig, ExecutionConfigArgs
- Idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Kms
Key string - Optional. The Cloud KMS key to use for encryption.
- List<string>
- Optional. Tags used for network traffic control.
- Network
Uri string - Optional. Network URI to connect workload to.
- Service
Account string - Optional. Service account that used to execute workload.
- Staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- Subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- Ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Kms
Key string - Optional. The Cloud KMS key to use for encryption.
- []string
- Optional. Tags used for network traffic control.
- Network
Uri string - Optional. Network URI to connect workload to.
- Service
Account string - Optional. Service account that used to execute workload.
- Staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- Subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- Ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl String - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key String - Optional. The Cloud KMS key to use for encryption.
- List<String>
- Optional. Tags used for network traffic control.
- network
Uri String - Optional. Network URI to connect workload to.
- service
Account String - Optional. Service account that used to execute workload.
- staging
Bucket String - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri String - Optional. Subnetwork URI to connect workload to.
- ttl String
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key string - Optional. The Cloud KMS key to use for encryption.
- string[]
- Optional. Tags used for network traffic control.
- network
Uri string - Optional. Network URI to connect workload to.
- service
Account string - Optional. Service account that used to execute workload.
- staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle_
ttl str - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms_
key str - Optional. The Cloud KMS key to use for encryption.
- Sequence[str]
- Optional. Tags used for network traffic control.
- network_
uri str - Optional. Network URI to connect workload to.
- service_
account str - Optional. Service account that used to execute workload.
- staging_
bucket str - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork_
uri str - Optional. Subnetwork URI to connect workload to.
- ttl str
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl String - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key String - Optional. The Cloud KMS key to use for encryption.
- List<String>
- Optional. Tags used for network traffic control.
- network
Uri String - Optional. Network URI to connect workload to.
- service
Account String - Optional. Service account that used to execute workload.
- staging
Bucket String - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri String - Optional. Subnetwork URI to connect workload to.
- ttl String
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
ExecutionConfigResponse, ExecutionConfigResponseArgs
- Idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Kms
Key string - Optional. The Cloud KMS key to use for encryption.
- List<string>
- Optional. Tags used for network traffic control.
- Network
Uri string - Optional. Network URI to connect workload to.
- Service
Account string - Optional. Service account that used to execute workload.
- Staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- Subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- Ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- Kms
Key string - Optional. The Cloud KMS key to use for encryption.
- []string
- Optional. Tags used for network traffic control.
- Network
Uri string - Optional. Network URI to connect workload to.
- Service
Account string - Optional. Service account that used to execute workload.
- Staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- Subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- Ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl String - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key String - Optional. The Cloud KMS key to use for encryption.
- List<String>
- Optional. Tags used for network traffic control.
- network
Uri String - Optional. Network URI to connect workload to.
- service
Account String - Optional. Service account that used to execute workload.
- staging
Bucket String - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri String - Optional. Subnetwork URI to connect workload to.
- ttl String
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl string - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key string - Optional. The Cloud KMS key to use for encryption.
- string[]
- Optional. Tags used for network traffic control.
- network
Uri string - Optional. Network URI to connect workload to.
- service
Account string - Optional. Service account that used to execute workload.
- staging
Bucket string - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri string - Optional. Subnetwork URI to connect workload to.
- ttl string
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle_
ttl str - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms_
key str - Optional. The Cloud KMS key to use for encryption.
- Sequence[str]
- Optional. Tags used for network traffic control.
- network_
uri str - Optional. Network URI to connect workload to.
- service_
account str - Optional. Service account that used to execute workload.
- staging_
bucket str - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork_
uri str - Optional. Subnetwork URI to connect workload to.
- ttl str
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- idle
Ttl String - Optional. Applies to sessions only. The duration to keep the session alive while it's idling. Exceeding this threshold causes the session to terminate. This field cannot be set on a batch workload. Minimum value is 10 minutes; maximum value is 14 days (see JSON representation of Duration (https://developers.google.com/protocol-buffers/docs/proto3#json)). Defaults to 1 hour if not set. If both ttl and idle_ttl are specified for an interactive session, the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
- kms
Key String - Optional. The Cloud KMS key to use for encryption.
- List<String>
- Optional. Tags used for network traffic control.
- network
Uri String - Optional. Network URI to connect workload to.
- service
Account String - Optional. Service account that used to execute workload.
- staging
Bucket String - Optional. A Cloud Storage bucket used to stage workload dependencies, config files, and store workload output and other ephemeral data, such as Spark history files. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location according to the region where your workload is running, and then create and manage project-level, per-location staging and temporary buckets. This field requires a Cloud Storage bucket name, not a gs://... URI to a Cloud Storage bucket.
- subnetwork
Uri String - Optional. Subnetwork URI to connect workload to.
- ttl String
- Optional. The duration after which the workload will be terminated, specified as the JSON representation for Duration (https://protobuf.dev/programming-guides/proto3/#json). When the workload exceeds this duration, it will be unconditionally terminated without waiting for ongoing work to finish. If ttl is not specified for a batch workload, the workload will be allowed to run until it exits naturally (or run forever without exiting). If ttl is not specified for an interactive session, it defaults to 24 hours. If ttl is not specified for a batch that uses 2.1+ runtime version, it defaults to 4 hours. Minimum value is 10 minutes; maximum value is 14 days. If both ttl and idle_ttl are specified (for an interactive session), the conditions are treated as OR conditions: the workload will be terminated when it has been idle for idle_ttl or when ttl has been exceeded, whichever occurs first.
JupyterConfig, JupyterConfigArgs
- Display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- Kernel
Pulumi.
Google Native. Dataproc. V1. Jupyter Config Kernel - Optional. Kernel
- Display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- Kernel
Jupyter
Config Kernel - Optional. Kernel
- display
Name String - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel
Jupyter
Config Kernel - Optional. Kernel
- display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel
Jupyter
Config Kernel - Optional. Kernel
- display_
name str - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel
Jupyter
Config Kernel - Optional. Kernel
- display
Name String - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel "KERNEL_UNSPECIFIED" | "PYTHON" | "SCALA"
- Optional. Kernel
JupyterConfigKernel, JupyterConfigKernelArgs
- Kernel
Unspecified - KERNEL_UNSPECIFIEDThe kernel is unknown.
- Python
- PYTHONPython kernel.
- Scala
- SCALAScala kernel.
- Jupyter
Config Kernel Kernel Unspecified - KERNEL_UNSPECIFIEDThe kernel is unknown.
- Jupyter
Config Kernel Python - PYTHONPython kernel.
- Jupyter
Config Kernel Scala - SCALAScala kernel.
- Kernel
Unspecified - KERNEL_UNSPECIFIEDThe kernel is unknown.
- Python
- PYTHONPython kernel.
- Scala
- SCALAScala kernel.
- Kernel
Unspecified - KERNEL_UNSPECIFIEDThe kernel is unknown.
- Python
- PYTHONPython kernel.
- Scala
- SCALAScala kernel.
- KERNEL_UNSPECIFIED
- KERNEL_UNSPECIFIEDThe kernel is unknown.
- PYTHON
- PYTHONPython kernel.
- SCALA
- SCALAScala kernel.
- "KERNEL_UNSPECIFIED"
- KERNEL_UNSPECIFIEDThe kernel is unknown.
- "PYTHON"
- PYTHONPython kernel.
- "SCALA"
- SCALAScala kernel.
JupyterConfigResponse, JupyterConfigResponseArgs
- Display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- Kernel string
- Optional. Kernel
- Display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- Kernel string
- Optional. Kernel
- display
Name String - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel String
- Optional. Kernel
- display
Name string - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel string
- Optional. Kernel
- display_
name str - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel str
- Optional. Kernel
- display
Name String - Optional. Display name, shown in the Jupyter kernelspec card.
- kernel String
- Optional. Kernel
PeripheralsConfig, PeripheralsConfigArgs
- Metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- Spark
History Pulumi.Server Config Google Native. Dataproc. V1. Inputs. Spark History Server Config - Optional. The Spark History Server configuration for the workload.
- Metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- Spark
History SparkServer Config History Server Config - Optional. The Spark History Server configuration for the workload.
- metastore
Service String - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History SparkServer Config History Server Config - Optional. The Spark History Server configuration for the workload.
- metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History SparkServer Config History Server Config - Optional. The Spark History Server configuration for the workload.
- metastore_
service str - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark_
history_ Sparkserver_ config History Server Config - Optional. The Spark History Server configuration for the workload.
- metastore
Service String - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History Property MapServer Config - Optional. The Spark History Server configuration for the workload.
PeripheralsConfigResponse, PeripheralsConfigResponseArgs
- Metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- Spark
History Pulumi.Server Config Google Native. Dataproc. V1. Inputs. Spark History Server Config Response - Optional. The Spark History Server configuration for the workload.
- Metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- Spark
History SparkServer Config History Server Config Response - Optional. The Spark History Server configuration for the workload.
- metastore
Service String - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History SparkServer Config History Server Config Response - Optional. The Spark History Server configuration for the workload.
- metastore
Service string - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History SparkServer Config History Server Config Response - Optional. The Spark History Server configuration for the workload.
- metastore_
service str - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark_
history_ Sparkserver_ config History Server Config Response - Optional. The Spark History Server configuration for the workload.
- metastore
Service String - Optional. Resource name of an existing Dataproc Metastore service.Example: projects/[project_id]/locations/[region]/services/[service_id]
- spark
History Property MapServer Config - Optional. The Spark History Server configuration for the workload.
PyPiRepositoryConfig, PyPiRepositoryConfigArgs
- Pypi
Repository string - Optional. PyPi repository address
- Pypi
Repository string - Optional. PyPi repository address
- pypi
Repository String - Optional. PyPi repository address
- pypi
Repository string - Optional. PyPi repository address
- pypi_
repository str - Optional. PyPi repository address
- pypi
Repository String - Optional. PyPi repository address
PyPiRepositoryConfigResponse, PyPiRepositoryConfigResponseArgs
- Pypi
Repository string - Optional. PyPi repository address
- Pypi
Repository string - Optional. PyPi repository address
- pypi
Repository String - Optional. PyPi repository address
- pypi
Repository string - Optional. PyPi repository address
- pypi_
repository str - Optional. PyPi repository address
- pypi
Repository String - Optional. PyPi repository address
RepositoryConfig, RepositoryConfigArgs
- Pypi
Repository Pulumi.Config Google Native. Dataproc. V1. Inputs. Py Pi Repository Config - Optional. Configuration for PyPi repository.
- Pypi
Repository PyConfig Pi Repository Config - Optional. Configuration for PyPi repository.
- pypi
Repository PyConfig Pi Repository Config - Optional. Configuration for PyPi repository.
- pypi
Repository PyConfig Pi Repository Config - Optional. Configuration for PyPi repository.
- pypi_
repository_ Pyconfig Pi Repository Config - Optional. Configuration for PyPi repository.
- pypi
Repository Property MapConfig - Optional. Configuration for PyPi repository.
RepositoryConfigResponse, RepositoryConfigResponseArgs
- Pypi
Repository Pulumi.Config Google Native. Dataproc. V1. Inputs. Py Pi Repository Config Response - Optional. Configuration for PyPi repository.
- Pypi
Repository PyConfig Pi Repository Config Response - Optional. Configuration for PyPi repository.
- pypi
Repository PyConfig Pi Repository Config Response - Optional. Configuration for PyPi repository.
- pypi
Repository PyConfig Pi Repository Config Response - Optional. Configuration for PyPi repository.
- pypi_
repository_ Pyconfig Pi Repository Config Response - Optional. Configuration for PyPi repository.
- pypi
Repository Property MapConfig - Optional. Configuration for PyPi repository.
RuntimeConfig, RuntimeConfigArgs
- Container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- Properties Dictionary<string, string>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- Repository
Config Pulumi.Google Native. Dataproc. V1. Inputs. Repository Config - Optional. Dependency repository configuration.
- Version string
- Optional. Version of the batch runtime.
- Container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- Properties map[string]string
- Optional. A mapping of property names to values, which are used to configure workload execution.
- Repository
Config RepositoryConfig - Optional. Dependency repository configuration.
- Version string
- Optional. Version of the batch runtime.
- container
Image String - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Map<String,String>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config RepositoryConfig - Optional. Dependency repository configuration.
- version String
- Optional. Version of the batch runtime.
- container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties {[key: string]: string}
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config RepositoryConfig - Optional. Dependency repository configuration.
- version string
- Optional. Version of the batch runtime.
- container_
image str - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Mapping[str, str]
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository_
config RepositoryConfig - Optional. Dependency repository configuration.
- version str
- Optional. Version of the batch runtime.
- container
Image String - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Map<String>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config Property Map - Optional. Dependency repository configuration.
- version String
- Optional. Version of the batch runtime.
RuntimeConfigResponse, RuntimeConfigResponseArgs
- Container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- Properties Dictionary<string, string>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- Repository
Config Pulumi.Google Native. Dataproc. V1. Inputs. Repository Config Response - Optional. Dependency repository configuration.
- Version string
- Optional. Version of the batch runtime.
- Container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- Properties map[string]string
- Optional. A mapping of property names to values, which are used to configure workload execution.
- Repository
Config RepositoryConfig Response - Optional. Dependency repository configuration.
- Version string
- Optional. Version of the batch runtime.
- container
Image String - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Map<String,String>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config RepositoryConfig Response - Optional. Dependency repository configuration.
- version String
- Optional. Version of the batch runtime.
- container
Image string - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties {[key: string]: string}
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config RepositoryConfig Response - Optional. Dependency repository configuration.
- version string
- Optional. Version of the batch runtime.
- container_
image str - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Mapping[str, str]
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository_
config RepositoryConfig Response - Optional. Dependency repository configuration.
- version str
- Optional. Version of the batch runtime.
- container
Image String - Optional. Optional custom container image for the job runtime environment. If not specified, a default container image will be used.
- properties Map<String>
- Optional. A mapping of property names to values, which are used to configure workload execution.
- repository
Config Property Map - Optional. Dependency repository configuration.
- version String
- Optional. Version of the batch runtime.
SparkHistoryServerConfig, SparkHistoryServerConfigArgs
- Dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- Dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster String - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc_
cluster str - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster String - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
SparkHistoryServerConfigResponse, SparkHistoryServerConfigResponseArgs
- Dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- Dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster String - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster string - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc_
cluster str - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
- dataproc
Cluster String - Optional. Resource name of an existing Dataproc Cluster to act as a Spark History Server for the workload.Example: projects/[project_id]/regions/[region]/clusters/[cluster_name]
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0
Google Cloud Native is in preview. Google Cloud Classic is fully supported.