gcp.vertex.AiFeatureStoreEntityType
Explore with Pulumi AI
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
To get more information about FeaturestoreEntitytype, see:
- API documentation
- How-to Guides
Example Usage
Vertex Ai Featurestore Entitytype
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
encryptionSpec: {
kmsKeyName: "kms-name",
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform",
labels: {
foo: "bar",
},
description: "test description",
featurestore: featurestore.id,
monitoringConfig: {
snapshotAnalysis: {
disabled: false,
monitoringIntervalDays: 1,
stalenessDays: 21,
},
numericalThresholdConfig: {
value: 0.8,
},
categoricalThresholdConfig: {
value: 10,
},
importFeaturesAnalysis: {
state: "ENABLED",
anomalyDetectionBaseline: "PREVIOUS_IMPORT_FEATURES_STATS",
},
},
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
},
encryption_spec={
"kms_key_name": "kms-name",
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform",
labels={
"foo": "bar",
},
description="test description",
featurestore=featurestore.id,
monitoring_config={
"snapshot_analysis": {
"disabled": False,
"monitoring_interval_days": 1,
"staleness_days": 21,
},
"numerical_threshold_config": {
"value": 0.8,
},
"categorical_threshold_config": {
"value": 10,
},
"import_features_analysis": {
"state": "ENABLED",
"anomaly_detection_baseline": "PREVIOUS_IMPORT_FEATURES_STATS",
},
})
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
KmsKeyName: pulumi.String("kms-name"),
},
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Description: pulumi.String("test description"),
Featurestore: featurestore.ID(),
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringIntervalDays: pulumi.Int(1),
StalenessDays: pulumi.Int(21),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0.8),
},
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(10),
},
ImportFeaturesAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs{
State: pulumi.String("ENABLED"),
AnomalyDetectionBaseline: pulumi.String("PREVIOUS_IMPORT_FEATURES_STATS"),
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
{
KmsKeyName = "kms-name",
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Description = "test description",
Featurestore = featurestore.Id,
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringIntervalDays = 1,
StalenessDays = 21,
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0.8,
},
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 10,
},
ImportFeaturesAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs
{
State = "ENABLED",
AnomalyDetectionBaseline = "PREVIOUS_IMPORT_FEATURES_STATS",
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.description("test description")
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringIntervalDays(1)
.stalenessDays(21)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.8)
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(10)
.build())
.importFeaturesAnalysis(AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs.builder()
.state("ENABLED")
.anomalyDetectionBaseline("PREVIOUS_IMPORT_FEATURES_STATS")
.build())
.build())
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
encryptionSpec:
kmsKeyName: kms-name
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform
labels:
foo: bar
description: test description
featurestore: ${featurestore.id}
monitoringConfig:
snapshotAnalysis:
disabled: false
monitoringIntervalDays: 1
stalenessDays: 21
numericalThresholdConfig:
value: 0.8
categoricalThresholdConfig:
value: 10
importFeaturesAnalysis:
state: ENABLED
anomalyDetectionBaseline: PREVIOUS_IMPORT_FEATURES_STATS
Vertex Ai Featurestore Entitytype With Beta Fields
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform2",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
encryptionSpec: {
kmsKeyName: "kms-name",
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform2",
labels: {
foo: "bar",
},
featurestore: featurestore.id,
monitoringConfig: {
snapshotAnalysis: {
disabled: false,
monitoringInterval: "86400s",
},
categoricalThresholdConfig: {
value: 0.3,
},
numericalThresholdConfig: {
value: 0.3,
},
},
offlineStorageTtlDays: 30,
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform2",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
},
encryption_spec={
"kms_key_name": "kms-name",
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform2",
labels={
"foo": "bar",
},
featurestore=featurestore.id,
monitoring_config={
"snapshot_analysis": {
"disabled": False,
"monitoring_interval": "86400s",
},
"categorical_threshold_config": {
"value": 0.3,
},
"numerical_threshold_config": {
"value": 0.3,
},
},
offline_storage_ttl_days=30)
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
KmsKeyName: pulumi.String("kms-name"),
},
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Featurestore: featurestore.ID(),
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringInterval: pulumi.String("86400s"),
},
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
},
OfflineStorageTtlDays: pulumi.Int(30),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
{
KmsKeyName = "kms-name",
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Featurestore = featurestore.Id,
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringInterval = "86400s",
},
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 0.3,
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0.3,
},
},
OfflineStorageTtlDays = 30,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringInterval("86400s")
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(0.3)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.3)
.build())
.build())
.offlineStorageTtlDays(30)
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform2
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
encryptionSpec:
kmsKeyName: kms-name
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform2
labels:
foo: bar
featurestore: ${featurestore.id}
monitoringConfig:
snapshotAnalysis:
disabled: false
monitoringInterval: 86400s
categoricalThresholdConfig:
value: 0.3
numericalThresholdConfig:
value: 0.3
offlineStorageTtlDays: 30
Create AiFeatureStoreEntityType Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new AiFeatureStoreEntityType(name: string, args: AiFeatureStoreEntityTypeArgs, opts?: CustomResourceOptions);
@overload
def AiFeatureStoreEntityType(resource_name: str,
args: AiFeatureStoreEntityTypeArgs,
opts: Optional[ResourceOptions] = None)
@overload
def AiFeatureStoreEntityType(resource_name: str,
opts: Optional[ResourceOptions] = None,
featurestore: Optional[str] = None,
description: Optional[str] = None,
labels: Optional[Mapping[str, str]] = None,
monitoring_config: Optional[AiFeatureStoreEntityTypeMonitoringConfigArgs] = None,
name: Optional[str] = None,
offline_storage_ttl_days: Optional[int] = None)
func NewAiFeatureStoreEntityType(ctx *Context, name string, args AiFeatureStoreEntityTypeArgs, opts ...ResourceOption) (*AiFeatureStoreEntityType, error)
public AiFeatureStoreEntityType(string name, AiFeatureStoreEntityTypeArgs args, CustomResourceOptions? opts = null)
public AiFeatureStoreEntityType(String name, AiFeatureStoreEntityTypeArgs args)
public AiFeatureStoreEntityType(String name, AiFeatureStoreEntityTypeArgs args, CustomResourceOptions options)
type: gcp:vertex:AiFeatureStoreEntityType
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args AiFeatureStoreEntityTypeArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AiFeatureStoreEntityTypeArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AiFeatureStoreEntityTypeArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AiFeatureStoreEntityTypeArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AiFeatureStoreEntityTypeArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var aiFeatureStoreEntityTypeResource = new Gcp.Vertex.AiFeatureStoreEntityType("aiFeatureStoreEntityTypeResource", new()
{
Featurestore = "string",
Description = "string",
Labels =
{
{ "string", "string" },
},
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 0,
},
ImportFeaturesAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs
{
AnomalyDetectionBaseline = "string",
State = "string",
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0,
},
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringIntervalDays = 0,
StalenessDays = 0,
},
},
Name = "string",
OfflineStorageTtlDays = 0,
});
example, err := vertex.NewAiFeatureStoreEntityType(ctx, "aiFeatureStoreEntityTypeResource", &vertex.AiFeatureStoreEntityTypeArgs{
Featurestore: pulumi.String("string"),
Description: pulumi.String("string"),
Labels: pulumi.StringMap{
"string": pulumi.String("string"),
},
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(0),
},
ImportFeaturesAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs{
AnomalyDetectionBaseline: pulumi.String("string"),
State: pulumi.String("string"),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0),
},
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringIntervalDays: pulumi.Int(0),
StalenessDays: pulumi.Int(0),
},
},
Name: pulumi.String("string"),
OfflineStorageTtlDays: pulumi.Int(0),
})
var aiFeatureStoreEntityTypeResource = new AiFeatureStoreEntityType("aiFeatureStoreEntityTypeResource", AiFeatureStoreEntityTypeArgs.builder()
.featurestore("string")
.description("string")
.labels(Map.of("string", "string"))
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(0)
.build())
.importFeaturesAnalysis(AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs.builder()
.anomalyDetectionBaseline("string")
.state("string")
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0)
.build())
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringIntervalDays(0)
.stalenessDays(0)
.build())
.build())
.name("string")
.offlineStorageTtlDays(0)
.build());
ai_feature_store_entity_type_resource = gcp.vertex.AiFeatureStoreEntityType("aiFeatureStoreEntityTypeResource",
featurestore="string",
description="string",
labels={
"string": "string",
},
monitoring_config={
"categorical_threshold_config": {
"value": 0,
},
"import_features_analysis": {
"anomaly_detection_baseline": "string",
"state": "string",
},
"numerical_threshold_config": {
"value": 0,
},
"snapshot_analysis": {
"disabled": False,
"monitoring_interval_days": 0,
"staleness_days": 0,
},
},
name="string",
offline_storage_ttl_days=0)
const aiFeatureStoreEntityTypeResource = new gcp.vertex.AiFeatureStoreEntityType("aiFeatureStoreEntityTypeResource", {
featurestore: "string",
description: "string",
labels: {
string: "string",
},
monitoringConfig: {
categoricalThresholdConfig: {
value: 0,
},
importFeaturesAnalysis: {
anomalyDetectionBaseline: "string",
state: "string",
},
numericalThresholdConfig: {
value: 0,
},
snapshotAnalysis: {
disabled: false,
monitoringIntervalDays: 0,
stalenessDays: 0,
},
},
name: "string",
offlineStorageTtlDays: 0,
});
type: gcp:vertex:AiFeatureStoreEntityType
properties:
description: string
featurestore: string
labels:
string: string
monitoringConfig:
categoricalThresholdConfig:
value: 0
importFeaturesAnalysis:
anomalyDetectionBaseline: string
state: string
numericalThresholdConfig:
value: 0
snapshotAnalysis:
disabled: false
monitoringIntervalDays: 0
stalenessDays: 0
name: string
offlineStorageTtlDays: 0
AiFeatureStoreEntityType Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The AiFeatureStoreEntityType resource accepts the following input properties:
- Featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- Description string
- Optional. Description of the EntityType.
- Labels Dictionary<string, string>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- Monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- Name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- Offline
Storage intTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- Featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- Description string
- Optional. Description of the EntityType.
- Labels map[string]string
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- Monitoring
Config AiFeature Store Entity Type Monitoring Config Args - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- Name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- Offline
Storage intTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- featurestore String
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- description String
- Optional. Description of the EntityType.
- labels Map<String,String>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name String
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage IntegerTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- description string
- Optional. Description of the EntityType.
- labels {[key: string]: string}
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage numberTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- featurestore str
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- description str
- Optional. Description of the EntityType.
- labels Mapping[str, str]
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring_
config AiFeature Store Entity Type Monitoring Config Args - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name str
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline_
storage_ intttl_ days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- featurestore String
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- description String
- Optional. Description of the EntityType.
- labels Map<String>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config Property Map - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name String
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage NumberTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
Outputs
All input properties are implicitly available as output properties. Additionally, the AiFeatureStoreEntityType resource produces the following output properties:
- Create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Effective
Labels Dictionary<string, string> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- Etag string
- Used to perform consistent read-modify-write updates.
- Id string
- The provider-assigned unique ID for this managed resource.
- Pulumi
Labels Dictionary<string, string> - The combination of labels configured directly on the resource and default labels configured on the provider.
- Region string
- The region of the EntityType.
- Update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Effective
Labels map[string]string - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- Etag string
- Used to perform consistent read-modify-write updates.
- Id string
- The provider-assigned unique ID for this managed resource.
- Pulumi
Labels map[string]string - The combination of labels configured directly on the resource and default labels configured on the provider.
- Region string
- The region of the EntityType.
- Update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time String - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- effective
Labels Map<String,String> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag String
- Used to perform consistent read-modify-write updates.
- id String
- The provider-assigned unique ID for this managed resource.
- pulumi
Labels Map<String,String> - The combination of labels configured directly on the resource and default labels configured on the provider.
- region String
- The region of the EntityType.
- update
Time String - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- effective
Labels {[key: string]: string} - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag string
- Used to perform consistent read-modify-write updates.
- id string
- The provider-assigned unique ID for this managed resource.
- pulumi
Labels {[key: string]: string} - The combination of labels configured directly on the resource and default labels configured on the provider.
- region string
- The region of the EntityType.
- update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create_
time str - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- effective_
labels Mapping[str, str] - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag str
- Used to perform consistent read-modify-write updates.
- id str
- The provider-assigned unique ID for this managed resource.
- pulumi_
labels Mapping[str, str] - The combination of labels configured directly on the resource and default labels configured on the provider.
- region str
- The region of the EntityType.
- update_
time str - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time String - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- effective
Labels Map<String> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag String
- Used to perform consistent read-modify-write updates.
- id String
- The provider-assigned unique ID for this managed resource.
- pulumi
Labels Map<String> - The combination of labels configured directly on the resource and default labels configured on the provider.
- region String
- The region of the EntityType.
- update
Time String - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
Look up Existing AiFeatureStoreEntityType Resource
Get an existing AiFeatureStoreEntityType resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: AiFeatureStoreEntityTypeState, opts?: CustomResourceOptions): AiFeatureStoreEntityType
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
create_time: Optional[str] = None,
description: Optional[str] = None,
effective_labels: Optional[Mapping[str, str]] = None,
etag: Optional[str] = None,
featurestore: Optional[str] = None,
labels: Optional[Mapping[str, str]] = None,
monitoring_config: Optional[AiFeatureStoreEntityTypeMonitoringConfigArgs] = None,
name: Optional[str] = None,
offline_storage_ttl_days: Optional[int] = None,
pulumi_labels: Optional[Mapping[str, str]] = None,
region: Optional[str] = None,
update_time: Optional[str] = None) -> AiFeatureStoreEntityType
func GetAiFeatureStoreEntityType(ctx *Context, name string, id IDInput, state *AiFeatureStoreEntityTypeState, opts ...ResourceOption) (*AiFeatureStoreEntityType, error)
public static AiFeatureStoreEntityType Get(string name, Input<string> id, AiFeatureStoreEntityTypeState? state, CustomResourceOptions? opts = null)
public static AiFeatureStoreEntityType get(String name, Output<String> id, AiFeatureStoreEntityTypeState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Description string
- Optional. Description of the EntityType.
- Effective
Labels Dictionary<string, string> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- Etag string
- Used to perform consistent read-modify-write updates.
- Featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- Labels Dictionary<string, string>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- Monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- Name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- Offline
Storage intTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- Pulumi
Labels Dictionary<string, string> - The combination of labels configured directly on the resource and default labels configured on the provider.
- Region string
- The region of the EntityType.
- Update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- Description string
- Optional. Description of the EntityType.
- Effective
Labels map[string]string - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- Etag string
- Used to perform consistent read-modify-write updates.
- Featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- Labels map[string]string
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- Monitoring
Config AiFeature Store Entity Type Monitoring Config Args - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- Name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- Offline
Storage intTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- Pulumi
Labels map[string]string - The combination of labels configured directly on the resource and default labels configured on the provider.
- Region string
- The region of the EntityType.
- Update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time String - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- description String
- Optional. Description of the EntityType.
- effective
Labels Map<String,String> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag String
- Used to perform consistent read-modify-write updates.
- featurestore String
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- labels Map<String,String>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name String
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage IntegerTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- pulumi
Labels Map<String,String> - The combination of labels configured directly on the resource and default labels configured on the provider.
- region String
- The region of the EntityType.
- update
Time String - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time string - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- description string
- Optional. Description of the EntityType.
- effective
Labels {[key: string]: string} - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag string
- Used to perform consistent read-modify-write updates.
- featurestore string
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- labels {[key: string]: string}
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config AiFeature Store Entity Type Monitoring Config - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name string
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage numberTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- pulumi
Labels {[key: string]: string} - The combination of labels configured directly on the resource and default labels configured on the provider.
- region string
- The region of the EntityType.
- update
Time string - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create_
time str - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- description str
- Optional. Description of the EntityType.
- effective_
labels Mapping[str, str] - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag str
- Used to perform consistent read-modify-write updates.
- featurestore str
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- labels Mapping[str, str]
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring_
config AiFeature Store Entity Type Monitoring Config Args - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name str
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline_
storage_ intttl_ days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- pulumi_
labels Mapping[str, str] - The combination of labels configured directly on the resource and default labels configured on the provider.
- region str
- The region of the EntityType.
- update_
time str - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- create
Time String - The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
- description String
- Optional. Description of the EntityType.
- effective
Labels Map<String> - All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- etag String
- Used to perform consistent read-modify-write updates.
- featurestore String
- The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
- labels Map<String>
A set of key/value label pairs to assign to this EntityType.
Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field
effective_labels
for all of the labels present on the resource.- monitoring
Config Property Map - The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
- name String
- The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.
- offline
Storage NumberTtl Days - Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.
- pulumi
Labels Map<String> - The combination of labels configured directly on the resource and default labels configured on the provider.
- region String
- The region of the EntityType.
- update
Time String - The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.
Supporting Types
AiFeatureStoreEntityTypeMonitoringConfig, AiFeatureStoreEntityTypeMonitoringConfigArgs
- Categorical
Threshold AiConfig Feature Store Entity Type Monitoring Config Categorical Threshold Config - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- Import
Features AiAnalysis Feature Store Entity Type Monitoring Config Import Features Analysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- Numerical
Threshold AiConfig Feature Store Entity Type Monitoring Config Numerical Threshold Config - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- Snapshot
Analysis AiFeature Store Entity Type Monitoring Config Snapshot Analysis - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
- Categorical
Threshold AiConfig Feature Store Entity Type Monitoring Config Categorical Threshold Config - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- Import
Features AiAnalysis Feature Store Entity Type Monitoring Config Import Features Analysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- Numerical
Threshold AiConfig Feature Store Entity Type Monitoring Config Numerical Threshold Config - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- Snapshot
Analysis AiFeature Store Entity Type Monitoring Config Snapshot Analysis - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
- categorical
Threshold AiConfig Feature Store Entity Type Monitoring Config Categorical Threshold Config - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- import
Features AiAnalysis Feature Store Entity Type Monitoring Config Import Features Analysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- numerical
Threshold AiConfig Feature Store Entity Type Monitoring Config Numerical Threshold Config - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- snapshot
Analysis AiFeature Store Entity Type Monitoring Config Snapshot Analysis - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
- categorical
Threshold AiConfig Feature Store Entity Type Monitoring Config Categorical Threshold Config - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- import
Features AiAnalysis Feature Store Entity Type Monitoring Config Import Features Analysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- numerical
Threshold AiConfig Feature Store Entity Type Monitoring Config Numerical Threshold Config - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- snapshot
Analysis AiFeature Store Entity Type Monitoring Config Snapshot Analysis - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
- categorical_
threshold_ Aiconfig Feature Store Entity Type Monitoring Config Categorical Threshold Config - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- import_
features_ Aianalysis Feature Store Entity Type Monitoring Config Import Features Analysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- numerical_
threshold_ Aiconfig Feature Store Entity Type Monitoring Config Numerical Threshold Config - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- snapshot_
analysis AiFeature Store Entity Type Monitoring Config Snapshot Analysis - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
- categorical
Threshold Property MapConfig - Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.
- import
Features Property MapAnalysis - The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.
- numerical
Threshold Property MapConfig - Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.
- snapshot
Analysis Property Map - The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.
AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig, AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
- Value double
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- Value float64
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value Double
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value number
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value float
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value Number
- Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis, AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs
- Anomaly
Detection stringBaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- State string
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
- Anomaly
Detection stringBaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- State string
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
- anomaly
Detection StringBaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- state String
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
- anomaly
Detection stringBaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- state string
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
- anomaly_
detection_ strbaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- state str
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
- anomaly
Detection StringBaseline - Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
- LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
- MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
- PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
- state String
- Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
- DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
- ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
- DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig, AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
- Value double
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- Value float64
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value Double
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value number
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value float
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
- value Number
- Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.
AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis, AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
- Disabled bool
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- Monitoring
Interval string Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- Monitoring
Interval intDays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- Staleness
Days int - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
- Disabled bool
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- Monitoring
Interval string Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- Monitoring
Interval intDays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- Staleness
Days int - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
- disabled Boolean
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- monitoring
Interval String Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- monitoring
Interval IntegerDays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- staleness
Days Integer - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
- disabled boolean
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- monitoring
Interval string Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- monitoring
Interval numberDays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- staleness
Days number - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
- disabled bool
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- monitoring_
interval str Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- monitoring_
interval_ intdays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- staleness_
days int - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
- disabled Boolean
- The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.
- monitoring
Interval String Configuration of the snapshot analysis based monitoring pipeline running interval. The value is rolled up to full day. A duration in seconds with up to nine fractional digits, terminated by 's'. Example: "3.5s".
Warning:
monitoring_interval
is deprecated and will be removed in a future release.- monitoring
Interval NumberDays - Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.
- staleness
Days Number - Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.
Import
FeaturestoreEntitytype can be imported using any of these accepted formats:
{{featurestore}}/entityTypes/{{name}}
When using the pulumi import
command, FeaturestoreEntitytype can be imported using one of the formats above. For example:
$ pulumi import gcp:vertex/aiFeatureStoreEntityType:AiFeatureStoreEntityType default {{featurestore}}/entityTypes/{{name}}
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- Google Cloud (GCP) Classic pulumi/pulumi-gcp
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
google-beta
Terraform Provider.