1. Packages
  2. DataRobot
  3. API Docs
  4. VectorDatabase
DataRobot v0.4.5 published on Monday, Nov 18, 2024 by DataRobot, Inc.

datarobot.VectorDatabase

Explore with Pulumi AI

datarobot logo
DataRobot v0.4.5 published on Monday, Nov 18, 2024 by DataRobot, Inc.

    Vector database

    Example Usage

    import * as pulumi from "@pulumi/pulumi";
    import * as datarobot from "@datarobot/pulumi-datarobot";
    
    const exampleUseCase = new datarobot.UseCase("exampleUseCase", {description: "Description for the example use case"});
    const exampleDatasetFromFile = new datarobot.DatasetFromFile("exampleDatasetFromFile", {
        filePath: "[Path to file to upload]",
        useCaseIds: [exampleUseCase.id],
    });
    const exampleVectorDatabase = new datarobot.VectorDatabase("exampleVectorDatabase", {
        useCaseId: exampleUseCase.id,
        datasetId: exampleDatasetFromFile.id,
    });
    // Optional
    // chunking_parameters = {
    //   chunk_overlap_percentage = 0
    //   chunk_size               = 512
    //   chunking_method          = "recursive"
    //   embedding_model          = "jinaai/jina-embedding-t-en-v1"
    //   separators               = ["\n", " "]
    // }
    export const exampleId = exampleVectorDatabase.id;
    
    import pulumi
    import pulumi_datarobot as datarobot
    
    example_use_case = datarobot.UseCase("exampleUseCase", description="Description for the example use case")
    example_dataset_from_file = datarobot.DatasetFromFile("exampleDatasetFromFile",
        file_path="[Path to file to upload]",
        use_case_ids=[example_use_case.id])
    example_vector_database = datarobot.VectorDatabase("exampleVectorDatabase",
        use_case_id=example_use_case.id,
        dataset_id=example_dataset_from_file.id)
    # Optional
    # chunking_parameters = {
    #   chunk_overlap_percentage = 0
    #   chunk_size               = 512
    #   chunking_method          = "recursive"
    #   embedding_model          = "jinaai/jina-embedding-t-en-v1"
    #   separators               = ["\n", " "]
    # }
    pulumi.export("exampleId", example_vector_database.id)
    
    package main
    
    import (
    	"github.com/datarobot-community/pulumi-datarobot/sdk/go/datarobot"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		exampleUseCase, err := datarobot.NewUseCase(ctx, "exampleUseCase", &datarobot.UseCaseArgs{
    			Description: pulumi.String("Description for the example use case"),
    		})
    		if err != nil {
    			return err
    		}
    		exampleDatasetFromFile, err := datarobot.NewDatasetFromFile(ctx, "exampleDatasetFromFile", &datarobot.DatasetFromFileArgs{
    			FilePath: pulumi.String("[Path to file to upload]"),
    			UseCaseIds: pulumi.StringArray{
    				exampleUseCase.ID(),
    			},
    		})
    		if err != nil {
    			return err
    		}
    		exampleVectorDatabase, err := datarobot.NewVectorDatabase(ctx, "exampleVectorDatabase", &datarobot.VectorDatabaseArgs{
    			UseCaseId: exampleUseCase.ID(),
    			DatasetId: exampleDatasetFromFile.ID(),
    		})
    		if err != nil {
    			return err
    		}
    		ctx.Export("exampleId", exampleVectorDatabase.ID())
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Datarobot = DataRobotPulumi.Datarobot;
    
    return await Deployment.RunAsync(() => 
    {
        var exampleUseCase = new Datarobot.UseCase("exampleUseCase", new()
        {
            Description = "Description for the example use case",
        });
    
        var exampleDatasetFromFile = new Datarobot.DatasetFromFile("exampleDatasetFromFile", new()
        {
            FilePath = "[Path to file to upload]",
            UseCaseIds = new[]
            {
                exampleUseCase.Id,
            },
        });
    
        var exampleVectorDatabase = new Datarobot.VectorDatabase("exampleVectorDatabase", new()
        {
            UseCaseId = exampleUseCase.Id,
            DatasetId = exampleDatasetFromFile.Id,
        });
    
        // Optional
        // chunking_parameters = {
        //   chunk_overlap_percentage = 0
        //   chunk_size               = 512
        //   chunking_method          = "recursive"
        //   embedding_model          = "jinaai/jina-embedding-t-en-v1"
        //   separators               = ["\n", " "]
        // }
        return new Dictionary<string, object?>
        {
            ["exampleId"] = exampleVectorDatabase.Id,
        };
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.datarobot.UseCase;
    import com.pulumi.datarobot.UseCaseArgs;
    import com.pulumi.datarobot.DatasetFromFile;
    import com.pulumi.datarobot.DatasetFromFileArgs;
    import com.pulumi.datarobot.VectorDatabase;
    import com.pulumi.datarobot.VectorDatabaseArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var exampleUseCase = new UseCase("exampleUseCase", UseCaseArgs.builder()
                .description("Description for the example use case")
                .build());
    
            var exampleDatasetFromFile = new DatasetFromFile("exampleDatasetFromFile", DatasetFromFileArgs.builder()
                .filePath("[Path to file to upload]")
                .useCaseIds(exampleUseCase.id())
                .build());
    
            var exampleVectorDatabase = new VectorDatabase("exampleVectorDatabase", VectorDatabaseArgs.builder()
                .useCaseId(exampleUseCase.id())
                .datasetId(exampleDatasetFromFile.id())
                .build());
    
            // Optional
            // chunking_parameters = {
            //   chunk_overlap_percentage = 0
            //   chunk_size               = 512
            //   chunking_method          = "recursive"
            //   embedding_model          = "jinaai/jina-embedding-t-en-v1"
            //   separators               = ["\n", " "]
            // }
            ctx.export("exampleId", exampleVectorDatabase.id());
        }
    }
    
    resources:
      exampleUseCase:
        type: datarobot:UseCase
        properties:
          description: Description for the example use case
      exampleDatasetFromFile:
        type: datarobot:DatasetFromFile
        properties:
          filePath: '[Path to file to upload]'
          useCaseIds:
            - ${exampleUseCase.id}
      exampleVectorDatabase:
        type: datarobot:VectorDatabase
        properties:
          useCaseId: ${exampleUseCase.id}
          datasetId: ${exampleDatasetFromFile.id}
    outputs:
      exampleId: ${exampleVectorDatabase.id}
    

    Create VectorDatabase Resource

    Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.

    Constructor syntax

    new VectorDatabase(name: string, args: VectorDatabaseArgs, opts?: CustomResourceOptions);
    @overload
    def VectorDatabase(resource_name: str,
                       args: VectorDatabaseArgs,
                       opts: Optional[ResourceOptions] = None)
    
    @overload
    def VectorDatabase(resource_name: str,
                       opts: Optional[ResourceOptions] = None,
                       dataset_id: Optional[str] = None,
                       use_case_id: Optional[str] = None,
                       chunking_parameters: Optional[VectorDatabaseChunkingParametersArgs] = None,
                       name: Optional[str] = None)
    func NewVectorDatabase(ctx *Context, name string, args VectorDatabaseArgs, opts ...ResourceOption) (*VectorDatabase, error)
    public VectorDatabase(string name, VectorDatabaseArgs args, CustomResourceOptions? opts = null)
    public VectorDatabase(String name, VectorDatabaseArgs args)
    public VectorDatabase(String name, VectorDatabaseArgs args, CustomResourceOptions options)
    
    type: datarobot:VectorDatabase
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    

    Parameters

    name string
    The unique name of the resource.
    args VectorDatabaseArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args VectorDatabaseArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args VectorDatabaseArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args VectorDatabaseArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args VectorDatabaseArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    Constructor example

    The following reference example uses placeholder values for all input properties.

    var vectorDatabaseResource = new Datarobot.VectorDatabase("vectorDatabaseResource", new()
    {
        DatasetId = "string",
        UseCaseId = "string",
        ChunkingParameters = new Datarobot.Inputs.VectorDatabaseChunkingParametersArgs
        {
            ChunkOverlapPercentage = 0,
            ChunkSize = 0,
            ChunkingMethod = "string",
            EmbeddingModel = "string",
            IsSeparatorRegex = false,
            Separators = new[]
            {
                "string",
            },
        },
        Name = "string",
    });
    
    example, err := datarobot.NewVectorDatabase(ctx, "vectorDatabaseResource", &datarobot.VectorDatabaseArgs{
    	DatasetId: pulumi.String("string"),
    	UseCaseId: pulumi.String("string"),
    	ChunkingParameters: &datarobot.VectorDatabaseChunkingParametersArgs{
    		ChunkOverlapPercentage: pulumi.Int(0),
    		ChunkSize:              pulumi.Int(0),
    		ChunkingMethod:         pulumi.String("string"),
    		EmbeddingModel:         pulumi.String("string"),
    		IsSeparatorRegex:       pulumi.Bool(false),
    		Separators: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    	},
    	Name: pulumi.String("string"),
    })
    
    var vectorDatabaseResource = new VectorDatabase("vectorDatabaseResource", VectorDatabaseArgs.builder()
        .datasetId("string")
        .useCaseId("string")
        .chunkingParameters(VectorDatabaseChunkingParametersArgs.builder()
            .chunkOverlapPercentage(0)
            .chunkSize(0)
            .chunkingMethod("string")
            .embeddingModel("string")
            .isSeparatorRegex(false)
            .separators("string")
            .build())
        .name("string")
        .build());
    
    vector_database_resource = datarobot.VectorDatabase("vectorDatabaseResource",
        dataset_id="string",
        use_case_id="string",
        chunking_parameters={
            "chunk_overlap_percentage": 0,
            "chunk_size": 0,
            "chunking_method": "string",
            "embedding_model": "string",
            "is_separator_regex": False,
            "separators": ["string"],
        },
        name="string")
    
    const vectorDatabaseResource = new datarobot.VectorDatabase("vectorDatabaseResource", {
        datasetId: "string",
        useCaseId: "string",
        chunkingParameters: {
            chunkOverlapPercentage: 0,
            chunkSize: 0,
            chunkingMethod: "string",
            embeddingModel: "string",
            isSeparatorRegex: false,
            separators: ["string"],
        },
        name: "string",
    });
    
    type: datarobot:VectorDatabase
    properties:
        chunkingParameters:
            chunkOverlapPercentage: 0
            chunkSize: 0
            chunkingMethod: string
            embeddingModel: string
            isSeparatorRegex: false
            separators:
                - string
        datasetId: string
        name: string
        useCaseId: string
    

    VectorDatabase Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.

    The VectorDatabase resource accepts the following input properties:

    DatasetId string
    The id of the Vector Database.
    UseCaseId string
    The id of the Use Case.
    ChunkingParameters DataRobotVectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    Name string
    The name of the VectorDatabase.
    DatasetId string
    The id of the Vector Database.
    UseCaseId string
    The id of the Use Case.
    ChunkingParameters VectorDatabaseChunkingParametersArgs
    The chunking parameters for the Model.
    Name string
    The name of the VectorDatabase.
    datasetId String
    The id of the Vector Database.
    useCaseId String
    The id of the Use Case.
    chunkingParameters VectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    name String
    The name of the VectorDatabase.
    datasetId string
    The id of the Vector Database.
    useCaseId string
    The id of the Use Case.
    chunkingParameters VectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    name string
    The name of the VectorDatabase.
    dataset_id str
    The id of the Vector Database.
    use_case_id str
    The id of the Use Case.
    chunking_parameters VectorDatabaseChunkingParametersArgs
    The chunking parameters for the Model.
    name str
    The name of the VectorDatabase.
    datasetId String
    The id of the Vector Database.
    useCaseId String
    The id of the Use Case.
    chunkingParameters Property Map
    The chunking parameters for the Model.
    name String
    The name of the VectorDatabase.

    Outputs

    All input properties are implicitly available as output properties. Additionally, the VectorDatabase resource produces the following output properties:

    Id string
    The provider-assigned unique ID for this managed resource.
    Id string
    The provider-assigned unique ID for this managed resource.
    id String
    The provider-assigned unique ID for this managed resource.
    id string
    The provider-assigned unique ID for this managed resource.
    id str
    The provider-assigned unique ID for this managed resource.
    id String
    The provider-assigned unique ID for this managed resource.

    Look up Existing VectorDatabase Resource

    Get an existing VectorDatabase resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

    public static get(name: string, id: Input<ID>, state?: VectorDatabaseState, opts?: CustomResourceOptions): VectorDatabase
    @staticmethod
    def get(resource_name: str,
            id: str,
            opts: Optional[ResourceOptions] = None,
            chunking_parameters: Optional[VectorDatabaseChunkingParametersArgs] = None,
            dataset_id: Optional[str] = None,
            name: Optional[str] = None,
            use_case_id: Optional[str] = None) -> VectorDatabase
    func GetVectorDatabase(ctx *Context, name string, id IDInput, state *VectorDatabaseState, opts ...ResourceOption) (*VectorDatabase, error)
    public static VectorDatabase Get(string name, Input<string> id, VectorDatabaseState? state, CustomResourceOptions? opts = null)
    public static VectorDatabase get(String name, Output<String> id, VectorDatabaseState state, CustomResourceOptions options)
    Resource lookup is not supported in YAML
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    resource_name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    The following state arguments are supported:
    ChunkingParameters DataRobotVectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    DatasetId string
    The id of the Vector Database.
    Name string
    The name of the VectorDatabase.
    UseCaseId string
    The id of the Use Case.
    ChunkingParameters VectorDatabaseChunkingParametersArgs
    The chunking parameters for the Model.
    DatasetId string
    The id of the Vector Database.
    Name string
    The name of the VectorDatabase.
    UseCaseId string
    The id of the Use Case.
    chunkingParameters VectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    datasetId String
    The id of the Vector Database.
    name String
    The name of the VectorDatabase.
    useCaseId String
    The id of the Use Case.
    chunkingParameters VectorDatabaseChunkingParameters
    The chunking parameters for the Model.
    datasetId string
    The id of the Vector Database.
    name string
    The name of the VectorDatabase.
    useCaseId string
    The id of the Use Case.
    chunking_parameters VectorDatabaseChunkingParametersArgs
    The chunking parameters for the Model.
    dataset_id str
    The id of the Vector Database.
    name str
    The name of the VectorDatabase.
    use_case_id str
    The id of the Use Case.
    chunkingParameters Property Map
    The chunking parameters for the Model.
    datasetId String
    The id of the Vector Database.
    name String
    The name of the VectorDatabase.
    useCaseId String
    The id of the Use Case.

    Supporting Types

    VectorDatabaseChunkingParameters, VectorDatabaseChunkingParametersArgs

    ChunkOverlapPercentage int
    The percentage of overlap between chunks.
    ChunkSize int
    The size of the chunks.
    ChunkingMethod string
    The method used to chunk the data.
    EmbeddingModel string
    The id of the Embedding Model.
    IsSeparatorRegex bool
    Whether the separator is a regex.
    Separators List<string>
    The separators used to split the data.
    ChunkOverlapPercentage int
    The percentage of overlap between chunks.
    ChunkSize int
    The size of the chunks.
    ChunkingMethod string
    The method used to chunk the data.
    EmbeddingModel string
    The id of the Embedding Model.
    IsSeparatorRegex bool
    Whether the separator is a regex.
    Separators []string
    The separators used to split the data.
    chunkOverlapPercentage Integer
    The percentage of overlap between chunks.
    chunkSize Integer
    The size of the chunks.
    chunkingMethod String
    The method used to chunk the data.
    embeddingModel String
    The id of the Embedding Model.
    isSeparatorRegex Boolean
    Whether the separator is a regex.
    separators List<String>
    The separators used to split the data.
    chunkOverlapPercentage number
    The percentage of overlap between chunks.
    chunkSize number
    The size of the chunks.
    chunkingMethod string
    The method used to chunk the data.
    embeddingModel string
    The id of the Embedding Model.
    isSeparatorRegex boolean
    Whether the separator is a regex.
    separators string[]
    The separators used to split the data.
    chunk_overlap_percentage int
    The percentage of overlap between chunks.
    chunk_size int
    The size of the chunks.
    chunking_method str
    The method used to chunk the data.
    embedding_model str
    The id of the Embedding Model.
    is_separator_regex bool
    Whether the separator is a regex.
    separators Sequence[str]
    The separators used to split the data.
    chunkOverlapPercentage Number
    The percentage of overlap between chunks.
    chunkSize Number
    The size of the chunks.
    chunkingMethod String
    The method used to chunk the data.
    embeddingModel String
    The id of the Embedding Model.
    isSeparatorRegex Boolean
    Whether the separator is a regex.
    separators List<String>
    The separators used to split the data.

    Package Details

    Repository
    datarobot datarobot-community/pulumi-datarobot
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the datarobot Terraform Provider.
    datarobot logo
    DataRobot v0.4.5 published on Monday, Nov 18, 2024 by DataRobot, Inc.