databricks.VectorSearchIndex
Explore with Pulumi AI
This resource can only be used on a Unity Catalog-enabled workspace!
This resource allows you to create Mosaic AI Vector Search Index in Databricks. Mosaic AI Vector Search is a serverless similarity search engine that allows you to store a vector representation of your data, including metadata, in a vector database. The Mosaic AI Vector Search Index provides the ability to search data in the linked Delta Table.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const sync = new databricks.VectorSearchIndex("sync", {
name: "main.default.vector_search_index",
endpointName: thisDatabricksVectorSearchEndpoint.name,
primaryKey: "id",
indexType: "DELTA_SYNC",
deltaSyncIndexSpec: {
sourceTable: "main.default.source_table",
pipelineType: "TRIGGERED",
embeddingSourceColumns: [{
name: "text",
embeddingModelEndpointName: _this.name,
}],
},
});
import pulumi
import pulumi_databricks as databricks
sync = databricks.VectorSearchIndex("sync",
name="main.default.vector_search_index",
endpoint_name=this_databricks_vector_search_endpoint["name"],
primary_key="id",
index_type="DELTA_SYNC",
delta_sync_index_spec={
"source_table": "main.default.source_table",
"pipeline_type": "TRIGGERED",
"embedding_source_columns": [{
"name": "text",
"embedding_model_endpoint_name": this["name"],
}],
})
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := databricks.NewVectorSearchIndex(ctx, "sync", &databricks.VectorSearchIndexArgs{
Name: pulumi.String("main.default.vector_search_index"),
EndpointName: pulumi.Any(thisDatabricksVectorSearchEndpoint.Name),
PrimaryKey: pulumi.String("id"),
IndexType: pulumi.String("DELTA_SYNC"),
DeltaSyncIndexSpec: &databricks.VectorSearchIndexDeltaSyncIndexSpecArgs{
SourceTable: pulumi.String("main.default.source_table"),
PipelineType: pulumi.String("TRIGGERED"),
EmbeddingSourceColumns: databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArray{
&databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs{
Name: pulumi.String("text"),
EmbeddingModelEndpointName: pulumi.Any(this.Name),
},
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var sync = new Databricks.VectorSearchIndex("sync", new()
{
Name = "main.default.vector_search_index",
EndpointName = thisDatabricksVectorSearchEndpoint.Name,
PrimaryKey = "id",
IndexType = "DELTA_SYNC",
DeltaSyncIndexSpec = new Databricks.Inputs.VectorSearchIndexDeltaSyncIndexSpecArgs
{
SourceTable = "main.default.source_table",
PipelineType = "TRIGGERED",
EmbeddingSourceColumns = new[]
{
new Databricks.Inputs.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs
{
Name = "text",
EmbeddingModelEndpointName = @this.Name,
},
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.VectorSearchIndex;
import com.pulumi.databricks.VectorSearchIndexArgs;
import com.pulumi.databricks.inputs.VectorSearchIndexDeltaSyncIndexSpecArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var sync = new VectorSearchIndex("sync", VectorSearchIndexArgs.builder()
.name("main.default.vector_search_index")
.endpointName(thisDatabricksVectorSearchEndpoint.name())
.primaryKey("id")
.indexType("DELTA_SYNC")
.deltaSyncIndexSpec(VectorSearchIndexDeltaSyncIndexSpecArgs.builder()
.sourceTable("main.default.source_table")
.pipelineType("TRIGGERED")
.embeddingSourceColumns(VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs.builder()
.name("text")
.embeddingModelEndpointName(this_.name())
.build())
.build())
.build());
}
}
resources:
sync:
type: databricks:VectorSearchIndex
properties:
name: main.default.vector_search_index
endpointName: ${thisDatabricksVectorSearchEndpoint.name}
primaryKey: id
indexType: DELTA_SYNC
deltaSyncIndexSpec:
sourceTable: main.default.source_table
pipelineType: TRIGGERED
embeddingSourceColumns:
- name: text
embeddingModelEndpointName: ${this.name}
Create VectorSearchIndex Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new VectorSearchIndex(name: string, args: VectorSearchIndexArgs, opts?: CustomResourceOptions);
@overload
def VectorSearchIndex(resource_name: str,
args: VectorSearchIndexArgs,
opts: Optional[ResourceOptions] = None)
@overload
def VectorSearchIndex(resource_name: str,
opts: Optional[ResourceOptions] = None,
endpoint_name: Optional[str] = None,
index_type: Optional[str] = None,
primary_key: Optional[str] = None,
delta_sync_index_spec: Optional[VectorSearchIndexDeltaSyncIndexSpecArgs] = None,
direct_access_index_spec: Optional[VectorSearchIndexDirectAccessIndexSpecArgs] = None,
name: Optional[str] = None)
func NewVectorSearchIndex(ctx *Context, name string, args VectorSearchIndexArgs, opts ...ResourceOption) (*VectorSearchIndex, error)
public VectorSearchIndex(string name, VectorSearchIndexArgs args, CustomResourceOptions? opts = null)
public VectorSearchIndex(String name, VectorSearchIndexArgs args)
public VectorSearchIndex(String name, VectorSearchIndexArgs args, CustomResourceOptions options)
type: databricks:VectorSearchIndex
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args VectorSearchIndexArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args VectorSearchIndexArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args VectorSearchIndexArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args VectorSearchIndexArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args VectorSearchIndexArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var vectorSearchIndexResource = new Databricks.VectorSearchIndex("vectorSearchIndexResource", new()
{
EndpointName = "string",
IndexType = "string",
PrimaryKey = "string",
DeltaSyncIndexSpec = new Databricks.Inputs.VectorSearchIndexDeltaSyncIndexSpecArgs
{
EmbeddingSourceColumns = new[]
{
new Databricks.Inputs.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs
{
EmbeddingModelEndpointName = "string",
Name = "string",
},
},
EmbeddingVectorColumns = new[]
{
new Databricks.Inputs.VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumnArgs
{
EmbeddingDimension = 0,
Name = "string",
},
},
EmbeddingWritebackTable = "string",
PipelineId = "string",
PipelineType = "string",
SourceTable = "string",
},
DirectAccessIndexSpec = new Databricks.Inputs.VectorSearchIndexDirectAccessIndexSpecArgs
{
EmbeddingSourceColumns = new[]
{
new Databricks.Inputs.VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumnArgs
{
EmbeddingModelEndpointName = "string",
Name = "string",
},
},
EmbeddingVectorColumns = new[]
{
new Databricks.Inputs.VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumnArgs
{
EmbeddingDimension = 0,
Name = "string",
},
},
SchemaJson = "string",
},
Name = "string",
});
example, err := databricks.NewVectorSearchIndex(ctx, "vectorSearchIndexResource", &databricks.VectorSearchIndexArgs{
EndpointName: pulumi.String("string"),
IndexType: pulumi.String("string"),
PrimaryKey: pulumi.String("string"),
DeltaSyncIndexSpec: &databricks.VectorSearchIndexDeltaSyncIndexSpecArgs{
EmbeddingSourceColumns: databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArray{
&databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs{
EmbeddingModelEndpointName: pulumi.String("string"),
Name: pulumi.String("string"),
},
},
EmbeddingVectorColumns: databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumnArray{
&databricks.VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumnArgs{
EmbeddingDimension: pulumi.Int(0),
Name: pulumi.String("string"),
},
},
EmbeddingWritebackTable: pulumi.String("string"),
PipelineId: pulumi.String("string"),
PipelineType: pulumi.String("string"),
SourceTable: pulumi.String("string"),
},
DirectAccessIndexSpec: &databricks.VectorSearchIndexDirectAccessIndexSpecArgs{
EmbeddingSourceColumns: databricks.VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumnArray{
&databricks.VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumnArgs{
EmbeddingModelEndpointName: pulumi.String("string"),
Name: pulumi.String("string"),
},
},
EmbeddingVectorColumns: databricks.VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumnArray{
&databricks.VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumnArgs{
EmbeddingDimension: pulumi.Int(0),
Name: pulumi.String("string"),
},
},
SchemaJson: pulumi.String("string"),
},
Name: pulumi.String("string"),
})
var vectorSearchIndexResource = new VectorSearchIndex("vectorSearchIndexResource", VectorSearchIndexArgs.builder()
.endpointName("string")
.indexType("string")
.primaryKey("string")
.deltaSyncIndexSpec(VectorSearchIndexDeltaSyncIndexSpecArgs.builder()
.embeddingSourceColumns(VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs.builder()
.embeddingModelEndpointName("string")
.name("string")
.build())
.embeddingVectorColumns(VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumnArgs.builder()
.embeddingDimension(0)
.name("string")
.build())
.embeddingWritebackTable("string")
.pipelineId("string")
.pipelineType("string")
.sourceTable("string")
.build())
.directAccessIndexSpec(VectorSearchIndexDirectAccessIndexSpecArgs.builder()
.embeddingSourceColumns(VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumnArgs.builder()
.embeddingModelEndpointName("string")
.name("string")
.build())
.embeddingVectorColumns(VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumnArgs.builder()
.embeddingDimension(0)
.name("string")
.build())
.schemaJson("string")
.build())
.name("string")
.build());
vector_search_index_resource = databricks.VectorSearchIndex("vectorSearchIndexResource",
endpoint_name="string",
index_type="string",
primary_key="string",
delta_sync_index_spec={
"embedding_source_columns": [{
"embedding_model_endpoint_name": "string",
"name": "string",
}],
"embedding_vector_columns": [{
"embedding_dimension": 0,
"name": "string",
}],
"embedding_writeback_table": "string",
"pipeline_id": "string",
"pipeline_type": "string",
"source_table": "string",
},
direct_access_index_spec={
"embedding_source_columns": [{
"embedding_model_endpoint_name": "string",
"name": "string",
}],
"embedding_vector_columns": [{
"embedding_dimension": 0,
"name": "string",
}],
"schema_json": "string",
},
name="string")
const vectorSearchIndexResource = new databricks.VectorSearchIndex("vectorSearchIndexResource", {
endpointName: "string",
indexType: "string",
primaryKey: "string",
deltaSyncIndexSpec: {
embeddingSourceColumns: [{
embeddingModelEndpointName: "string",
name: "string",
}],
embeddingVectorColumns: [{
embeddingDimension: 0,
name: "string",
}],
embeddingWritebackTable: "string",
pipelineId: "string",
pipelineType: "string",
sourceTable: "string",
},
directAccessIndexSpec: {
embeddingSourceColumns: [{
embeddingModelEndpointName: "string",
name: "string",
}],
embeddingVectorColumns: [{
embeddingDimension: 0,
name: "string",
}],
schemaJson: "string",
},
name: "string",
});
type: databricks:VectorSearchIndex
properties:
deltaSyncIndexSpec:
embeddingSourceColumns:
- embeddingModelEndpointName: string
name: string
embeddingVectorColumns:
- embeddingDimension: 0
name: string
embeddingWritebackTable: string
pipelineId: string
pipelineType: string
sourceTable: string
directAccessIndexSpec:
embeddingSourceColumns:
- embeddingModelEndpointName: string
name: string
embeddingVectorColumns:
- embeddingDimension: 0
name: string
schemaJson: string
endpointName: string
indexType: string
name: string
primaryKey: string
VectorSearchIndex Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The VectorSearchIndex resource accepts the following input properties:
- Endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- Index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- Primary
Key string - The column name that will be used as a primary key.
- Delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - Direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- Endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- Index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- Primary
Key string - The column name that will be used as a primary key.
- Delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec Args - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - Direct
Access VectorIndex Spec Search Index Direct Access Index Spec Args - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- endpoint
Name String - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type String - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- primary
Key String - The column name that will be used as a primary key.
- delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- primary
Key string - The column name that will be used as a primary key.
- delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- endpoint_
name str - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index_
type str - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- primary_
key str - The column name that will be used as a primary key.
- delta_
sync_ Vectorindex_ spec Search Index Delta Sync Index Spec Args - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct_
access_ Vectorindex_ spec Search Index Direct Access Index Spec Args - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- endpoint
Name String - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type String - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- primary
Key String - The column name that will be used as a primary key.
- delta
Sync Property MapIndex Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access Property MapIndex Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
Outputs
All input properties are implicitly available as output properties. Additionally, the VectorSearchIndex resource produces the following output properties:
- Creator string
- Creator of the endpoint.
- Id string
- The provider-assigned unique ID for this managed resource.
- Statuses
List<Vector
Search Index Status> - Object describing the current status of the index consisting of the following fields:
- Creator string
- Creator of the endpoint.
- Id string
- The provider-assigned unique ID for this managed resource.
- Statuses
[]Vector
Search Index Status - Object describing the current status of the index consisting of the following fields:
- creator String
- Creator of the endpoint.
- id String
- The provider-assigned unique ID for this managed resource.
- statuses
List<Vector
Search Index Status> - Object describing the current status of the index consisting of the following fields:
- creator string
- Creator of the endpoint.
- id string
- The provider-assigned unique ID for this managed resource.
- statuses
Vector
Search Index Status[] - Object describing the current status of the index consisting of the following fields:
- creator str
- Creator of the endpoint.
- id str
- The provider-assigned unique ID for this managed resource.
- statuses
Sequence[Vector
Search Index Status] - Object describing the current status of the index consisting of the following fields:
- creator String
- Creator of the endpoint.
- id String
- The provider-assigned unique ID for this managed resource.
- statuses List<Property Map>
- Object describing the current status of the index consisting of the following fields:
Look up Existing VectorSearchIndex Resource
Get an existing VectorSearchIndex resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: VectorSearchIndexState, opts?: CustomResourceOptions): VectorSearchIndex
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
creator: Optional[str] = None,
delta_sync_index_spec: Optional[VectorSearchIndexDeltaSyncIndexSpecArgs] = None,
direct_access_index_spec: Optional[VectorSearchIndexDirectAccessIndexSpecArgs] = None,
endpoint_name: Optional[str] = None,
index_type: Optional[str] = None,
name: Optional[str] = None,
primary_key: Optional[str] = None,
statuses: Optional[Sequence[VectorSearchIndexStatusArgs]] = None) -> VectorSearchIndex
func GetVectorSearchIndex(ctx *Context, name string, id IDInput, state *VectorSearchIndexState, opts ...ResourceOption) (*VectorSearchIndex, error)
public static VectorSearchIndex Get(string name, Input<string> id, VectorSearchIndexState? state, CustomResourceOptions? opts = null)
public static VectorSearchIndex get(String name, Output<String> id, VectorSearchIndexState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Creator string
- Creator of the endpoint.
- Delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - Direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - Endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- Index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - Primary
Key string - The column name that will be used as a primary key.
- Statuses
List<Vector
Search Index Status> - Object describing the current status of the index consisting of the following fields:
- Creator string
- Creator of the endpoint.
- Delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec Args - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - Direct
Access VectorIndex Spec Search Index Direct Access Index Spec Args - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - Endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- Index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - Primary
Key string - The column name that will be used as a primary key.
- Statuses
[]Vector
Search Index Status Args - Object describing the current status of the index consisting of the following fields:
- creator String
- Creator of the endpoint.
- delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - endpoint
Name String - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type String - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - primary
Key String - The column name that will be used as a primary key.
- statuses
List<Vector
Search Index Status> - Object describing the current status of the index consisting of the following fields:
- creator string
- Creator of the endpoint.
- delta
Sync VectorIndex Spec Search Index Delta Sync Index Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access VectorIndex Spec Search Index Direct Access Index Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - endpoint
Name string - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type string - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - primary
Key string - The column name that will be used as a primary key.
- statuses
Vector
Search Index Status[] - Object describing the current status of the index consisting of the following fields:
- creator str
- Creator of the endpoint.
- delta_
sync_ Vectorindex_ spec Search Index Delta Sync Index Spec Args - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct_
access_ Vectorindex_ spec Search Index Direct Access Index Spec Args - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - endpoint_
name str - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index_
type str - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - primary_
key str - The column name that will be used as a primary key.
- statuses
Sequence[Vector
Search Index Status Args] - Object describing the current status of the index consisting of the following fields:
- creator String
- Creator of the endpoint.
- delta
Sync Property MapIndex Spec - Specification for Delta Sync Index. Required if
index_type
isDELTA_SYNC
. - direct
Access Property MapIndex Spec - Specification for Direct Vector Access Index. Required if
index_type
isDIRECT_ACCESS
. - endpoint
Name String - The name of the Mosaic AI Vector Search Endpoint that will be used for indexing the data.
- index
Type String - Mosaic AI Vector Search index type. Currently supported values are:
DELTA_SYNC
: An index that automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.DIRECT_ACCESS
: An index that supports the direct read and write of vectors and metadata through our REST and SDK APIs. With this model, the user manages index updates.
- name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
). - primary
Key String - The column name that will be used as a primary key.
- statuses List<Property Map>
- Object describing the current status of the index consisting of the following fields:
Supporting Types
VectorSearchIndexDeltaSyncIndexSpec, VectorSearchIndexDeltaSyncIndexSpecArgs
- Embedding
Source List<VectorColumns Search Index Delta Sync Index Spec Embedding Source Column> - array of objects representing columns that contain the embedding source. Each entry consists of:
- Embedding
Vector List<VectorColumns Search Index Delta Sync Index Spec Embedding Vector Column> - Embedding
Writeback stringTable - Pipeline
Id string - ID of the associated Delta Live Table pipeline.
- Pipeline
Type string - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- Source
Table string - The name of the source table.
- Embedding
Source []VectorColumns Search Index Delta Sync Index Spec Embedding Source Column - array of objects representing columns that contain the embedding source. Each entry consists of:
- Embedding
Vector []VectorColumns Search Index Delta Sync Index Spec Embedding Vector Column - Embedding
Writeback stringTable - Pipeline
Id string - ID of the associated Delta Live Table pipeline.
- Pipeline
Type string - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- Source
Table string - The name of the source table.
- embedding
Source List<VectorColumns Search Index Delta Sync Index Spec Embedding Source Column> - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector List<VectorColumns Search Index Delta Sync Index Spec Embedding Vector Column> - embedding
Writeback StringTable - pipeline
Id String - ID of the associated Delta Live Table pipeline.
- pipeline
Type String - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- source
Table String - The name of the source table.
- embedding
Source VectorColumns Search Index Delta Sync Index Spec Embedding Source Column[] - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector VectorColumns Search Index Delta Sync Index Spec Embedding Vector Column[] - embedding
Writeback stringTable - pipeline
Id string - ID of the associated Delta Live Table pipeline.
- pipeline
Type string - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- source
Table string - The name of the source table.
- embedding_
source_ Sequence[Vectorcolumns Search Index Delta Sync Index Spec Embedding Source Column] - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding_
vector_ Sequence[Vectorcolumns Search Index Delta Sync Index Spec Embedding Vector Column] - embedding_
writeback_ strtable - pipeline_
id str - ID of the associated Delta Live Table pipeline.
- pipeline_
type str - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- source_
table str - The name of the source table.
- embedding
Source List<Property Map>Columns - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector List<Property Map>Columns - embedding
Writeback StringTable - pipeline
Id String - ID of the associated Delta Live Table pipeline.
- pipeline
Type String - Pipeline execution mode. Possible values are:
TRIGGERED
: If the pipeline uses the triggered execution mode, the system stops processing after successfully refreshing the source table in the pipeline once, ensuring the table is updated based on the data available when the update started.CONTINUOUS
: If the pipeline uses continuous execution, the pipeline processes new data as it arrives in the source table to keep the vector index fresh.
- source
Table String - The name of the source table.
VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumn, VectorSearchIndexDeltaSyncIndexSpecEmbeddingSourceColumnArgs
- Embedding
Model stringEndpoint Name - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- Embedding
Model stringEndpoint Name - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model StringEndpoint Name - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model stringEndpoint Name - name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding_
model_ strendpoint_ name - name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model StringEndpoint Name - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumn, VectorSearchIndexDeltaSyncIndexSpecEmbeddingVectorColumnArgs
- Embedding
Dimension int - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- Embedding
Dimension int - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension Integer - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension number - name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding_
dimension int - name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension Number - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
VectorSearchIndexDirectAccessIndexSpec, VectorSearchIndexDirectAccessIndexSpecArgs
- Embedding
Source List<VectorColumns Search Index Direct Access Index Spec Embedding Source Column> - array of objects representing columns that contain the embedding source. Each entry consists of:
- Embedding
Vector List<VectorColumns Search Index Direct Access Index Spec Embedding Vector Column> - Schema
Json string - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
- Embedding
Source []VectorColumns Search Index Direct Access Index Spec Embedding Source Column - array of objects representing columns that contain the embedding source. Each entry consists of:
- Embedding
Vector []VectorColumns Search Index Direct Access Index Spec Embedding Vector Column - Schema
Json string - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
- embedding
Source List<VectorColumns Search Index Direct Access Index Spec Embedding Source Column> - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector List<VectorColumns Search Index Direct Access Index Spec Embedding Vector Column> - schema
Json String - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
- embedding
Source VectorColumns Search Index Direct Access Index Spec Embedding Source Column[] - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector VectorColumns Search Index Direct Access Index Spec Embedding Vector Column[] - schema
Json string - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
- embedding_
source_ Sequence[Vectorcolumns Search Index Direct Access Index Spec Embedding Source Column] - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding_
vector_ Sequence[Vectorcolumns Search Index Direct Access Index Spec Embedding Vector Column] - schema_
json str - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
- embedding
Source List<Property Map>Columns - array of objects representing columns that contain the embedding source. Each entry consists of:
- embedding
Vector List<Property Map>Columns - schema
Json String - The schema of the index in JSON format. Check the API documentation for a list of supported data types.
VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumn, VectorSearchIndexDirectAccessIndexSpecEmbeddingSourceColumnArgs
- Embedding
Model stringEndpoint Name - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- Embedding
Model stringEndpoint Name - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model StringEndpoint Name - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model stringEndpoint Name - name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding_
model_ strendpoint_ name - name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Model StringEndpoint Name - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumn, VectorSearchIndexDirectAccessIndexSpecEmbeddingVectorColumnArgs
- Embedding
Dimension int - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- Embedding
Dimension int - Name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension Integer - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension number - name string
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding_
dimension int - name str
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
- embedding
Dimension Number - name String
- Three-level name of the Mosaic AI Vector Search Index to create (
catalog.schema.index_name
).
VectorSearchIndexStatus, VectorSearchIndexStatusArgs
- Index
Url string - Index API Url to be used to perform operations on the index
- Indexed
Row intCount - Number of rows indexed
- Message string
- Message associated with the index status
- Ready bool
- Whether the index is ready for search
- Index
Url string - Index API Url to be used to perform operations on the index
- Indexed
Row intCount - Number of rows indexed
- Message string
- Message associated with the index status
- Ready bool
- Whether the index is ready for search
- index
Url String - Index API Url to be used to perform operations on the index
- indexed
Row IntegerCount - Number of rows indexed
- message String
- Message associated with the index status
- ready Boolean
- Whether the index is ready for search
- index
Url string - Index API Url to be used to perform operations on the index
- indexed
Row numberCount - Number of rows indexed
- message string
- Message associated with the index status
- ready boolean
- Whether the index is ready for search
- index_
url str - Index API Url to be used to perform operations on the index
- indexed_
row_ intcount - Number of rows indexed
- message str
- Message associated with the index status
- ready bool
- Whether the index is ready for search
- index
Url String - Index API Url to be used to perform operations on the index
- indexed
Row NumberCount - Number of rows indexed
- message String
- Message associated with the index status
- ready Boolean
- Whether the index is ready for search
Import
The resource can be imported using the name of the Mosaic AI Vector Search Index
bash
$ pulumi import databricks:index/vectorSearchIndex:VectorSearchIndex this <index-name>
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
databricks
Terraform Provider.