1. Packages
  2. Databricks
  3. API Docs
  4. getSparkVersion
Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi

databricks.getSparkVersion

Explore with Pulumi AI

databricks logo
Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi

    Note If you have a fully automated setup with workspaces created by databricks.MwsWorkspaces or azurerm_databricks_workspace, please make sure to add depends_on attribute in order to prevent default auth: cannot configure default credentials errors.

    Gets Databricks Runtime (DBR) version that could be used for spark_version parameter in databricks.Cluster and other resources that fits search criteria, like specific Spark or Scala version, ML or Genomics runtime, etc., similar to executing databricks clusters spark-versions, and filters it to return the latest version that matches criteria. Often used along databricks.getNodeType data source.

    Note This is experimental functionality, which aims to simplify things. In case of wrong parameters given (e.g. together ml = true and genomics = true, or something like), data source will throw an error. Similarly, if search returns multiple results, and latest = false, data source will throw an error.

    Example Usage

    import * as pulumi from "@pulumi/pulumi";
    import * as databricks from "@pulumi/databricks";
    
    const withGpu = databricks.getNodeType({
        localDisk: true,
        minCores: 16,
        gbPerCore: 1,
        minGpus: 1,
    });
    const gpuMl = databricks.getSparkVersion({
        gpu: true,
        ml: true,
    });
    const research = new databricks.Cluster("research", {
        clusterName: "Research Cluster",
        sparkVersion: gpuMl.then(gpuMl => gpuMl.id),
        nodeTypeId: withGpu.then(withGpu => withGpu.id),
        autoterminationMinutes: 20,
        autoscale: {
            minWorkers: 1,
            maxWorkers: 50,
        },
    });
    
    import pulumi
    import pulumi_databricks as databricks
    
    with_gpu = databricks.get_node_type(local_disk=True,
        min_cores=16,
        gb_per_core=1,
        min_gpus=1)
    gpu_ml = databricks.get_spark_version(gpu=True,
        ml=True)
    research = databricks.Cluster("research",
        cluster_name="Research Cluster",
        spark_version=gpu_ml.id,
        node_type_id=with_gpu.id,
        autotermination_minutes=20,
        autoscale={
            "min_workers": 1,
            "max_workers": 50,
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		withGpu, err := databricks.GetNodeType(ctx, &databricks.GetNodeTypeArgs{
    			LocalDisk: pulumi.BoolRef(true),
    			MinCores:  pulumi.IntRef(16),
    			GbPerCore: pulumi.IntRef(1),
    			MinGpus:   pulumi.IntRef(1),
    		}, nil)
    		if err != nil {
    			return err
    		}
    		gpuMl, err := databricks.GetSparkVersion(ctx, &databricks.GetSparkVersionArgs{
    			Gpu: pulumi.BoolRef(true),
    			Ml:  pulumi.BoolRef(true),
    		}, nil)
    		if err != nil {
    			return err
    		}
    		_, err = databricks.NewCluster(ctx, "research", &databricks.ClusterArgs{
    			ClusterName:            pulumi.String("Research Cluster"),
    			SparkVersion:           pulumi.String(gpuMl.Id),
    			NodeTypeId:             pulumi.String(withGpu.Id),
    			AutoterminationMinutes: pulumi.Int(20),
    			Autoscale: &databricks.ClusterAutoscaleArgs{
    				MinWorkers: pulumi.Int(1),
    				MaxWorkers: pulumi.Int(50),
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Databricks = Pulumi.Databricks;
    
    return await Deployment.RunAsync(() => 
    {
        var withGpu = Databricks.GetNodeType.Invoke(new()
        {
            LocalDisk = true,
            MinCores = 16,
            GbPerCore = 1,
            MinGpus = 1,
        });
    
        var gpuMl = Databricks.GetSparkVersion.Invoke(new()
        {
            Gpu = true,
            Ml = true,
        });
    
        var research = new Databricks.Cluster("research", new()
        {
            ClusterName = "Research Cluster",
            SparkVersion = gpuMl.Apply(getSparkVersionResult => getSparkVersionResult.Id),
            NodeTypeId = withGpu.Apply(getNodeTypeResult => getNodeTypeResult.Id),
            AutoterminationMinutes = 20,
            Autoscale = new Databricks.Inputs.ClusterAutoscaleArgs
            {
                MinWorkers = 1,
                MaxWorkers = 50,
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.databricks.DatabricksFunctions;
    import com.pulumi.databricks.inputs.GetNodeTypeArgs;
    import com.pulumi.databricks.inputs.GetSparkVersionArgs;
    import com.pulumi.databricks.Cluster;
    import com.pulumi.databricks.ClusterArgs;
    import com.pulumi.databricks.inputs.ClusterAutoscaleArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var withGpu = DatabricksFunctions.getNodeType(GetNodeTypeArgs.builder()
                .localDisk(true)
                .minCores(16)
                .gbPerCore(1)
                .minGpus(1)
                .build());
    
            final var gpuMl = DatabricksFunctions.getSparkVersion(GetSparkVersionArgs.builder()
                .gpu(true)
                .ml(true)
                .build());
    
            var research = new Cluster("research", ClusterArgs.builder()
                .clusterName("Research Cluster")
                .sparkVersion(gpuMl.applyValue(getSparkVersionResult -> getSparkVersionResult.id()))
                .nodeTypeId(withGpu.applyValue(getNodeTypeResult -> getNodeTypeResult.id()))
                .autoterminationMinutes(20)
                .autoscale(ClusterAutoscaleArgs.builder()
                    .minWorkers(1)
                    .maxWorkers(50)
                    .build())
                .build());
    
        }
    }
    
    resources:
      research:
        type: databricks:Cluster
        properties:
          clusterName: Research Cluster
          sparkVersion: ${gpuMl.id}
          nodeTypeId: ${withGpu.id}
          autoterminationMinutes: 20
          autoscale:
            minWorkers: 1
            maxWorkers: 50
    variables:
      withGpu:
        fn::invoke:
          Function: databricks:getNodeType
          Arguments:
            localDisk: true
            minCores: 16
            gbPerCore: 1
            minGpus: 1
      gpuMl:
        fn::invoke:
          Function: databricks:getSparkVersion
          Arguments:
            gpu: true
            ml: true
    

    The following resources are used in the same context:

    • End to end workspace management guide.
    • databricks.Cluster to create Databricks Clusters.
    • databricks.ClusterPolicy to create a databricks.Cluster policy, which limits the ability to create clusters based on a set of rules.
    • databricks.InstancePool to manage instance pools to reduce cluster start and auto-scaling times by maintaining a set of idle, ready-to-use instances.
    • databricks.Job to manage Databricks Jobs to run non-interactive code in a databricks_cluster.

    Using getSparkVersion

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getSparkVersion(args: GetSparkVersionArgs, opts?: InvokeOptions): Promise<GetSparkVersionResult>
    function getSparkVersionOutput(args: GetSparkVersionOutputArgs, opts?: InvokeOptions): Output<GetSparkVersionResult>
    def get_spark_version(beta: Optional[bool] = None,
                          genomics: Optional[bool] = None,
                          gpu: Optional[bool] = None,
                          graviton: Optional[bool] = None,
                          id: Optional[str] = None,
                          latest: Optional[bool] = None,
                          long_term_support: Optional[bool] = None,
                          ml: Optional[bool] = None,
                          photon: Optional[bool] = None,
                          scala: Optional[str] = None,
                          spark_version: Optional[str] = None,
                          opts: Optional[InvokeOptions] = None) -> GetSparkVersionResult
    def get_spark_version_output(beta: Optional[pulumi.Input[bool]] = None,
                          genomics: Optional[pulumi.Input[bool]] = None,
                          gpu: Optional[pulumi.Input[bool]] = None,
                          graviton: Optional[pulumi.Input[bool]] = None,
                          id: Optional[pulumi.Input[str]] = None,
                          latest: Optional[pulumi.Input[bool]] = None,
                          long_term_support: Optional[pulumi.Input[bool]] = None,
                          ml: Optional[pulumi.Input[bool]] = None,
                          photon: Optional[pulumi.Input[bool]] = None,
                          scala: Optional[pulumi.Input[str]] = None,
                          spark_version: Optional[pulumi.Input[str]] = None,
                          opts: Optional[InvokeOptions] = None) -> Output[GetSparkVersionResult]
    func GetSparkVersion(ctx *Context, args *GetSparkVersionArgs, opts ...InvokeOption) (*GetSparkVersionResult, error)
    func GetSparkVersionOutput(ctx *Context, args *GetSparkVersionOutputArgs, opts ...InvokeOption) GetSparkVersionResultOutput

    > Note: This function is named GetSparkVersion in the Go SDK.

    public static class GetSparkVersion 
    {
        public static Task<GetSparkVersionResult> InvokeAsync(GetSparkVersionArgs args, InvokeOptions? opts = null)
        public static Output<GetSparkVersionResult> Invoke(GetSparkVersionInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetSparkVersionResult> getSparkVersion(GetSparkVersionArgs args, InvokeOptions options)
    // Output-based functions aren't available in Java yet
    
    fn::invoke:
      function: databricks:index/getSparkVersion:getSparkVersion
      arguments:
        # arguments dictionary

    The following arguments are supported:

    Beta bool
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    Genomics bool
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    Gpu bool
    if we should limit the search only to runtimes that support GPUs. Default to false.
    Graviton bool
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    Id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    Latest bool
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    LongTermSupport bool
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    Ml bool
    if we should limit the search only to ML runtimes. Default to false.
    Photon bool
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    Scala string
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    SparkVersion string
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.
    Beta bool
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    Genomics bool
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    Gpu bool
    if we should limit the search only to runtimes that support GPUs. Default to false.
    Graviton bool
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    Id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    Latest bool
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    LongTermSupport bool
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    Ml bool
    if we should limit the search only to ML runtimes. Default to false.
    Photon bool
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    Scala string
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    SparkVersion string
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.
    beta Boolean
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    genomics Boolean
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    gpu Boolean
    if we should limit the search only to runtimes that support GPUs. Default to false.
    graviton Boolean
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    id String
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    latest Boolean
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    longTermSupport Boolean
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    ml Boolean
    if we should limit the search only to ML runtimes. Default to false.
    photon Boolean
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala String
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    sparkVersion String
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.
    beta boolean
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    genomics boolean
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    gpu boolean
    if we should limit the search only to runtimes that support GPUs. Default to false.
    graviton boolean
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    latest boolean
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    longTermSupport boolean
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    ml boolean
    if we should limit the search only to ML runtimes. Default to false.
    photon boolean
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala string
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    sparkVersion string
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.
    beta bool
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    genomics bool
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    gpu bool
    if we should limit the search only to runtimes that support GPUs. Default to false.
    graviton bool
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    id str
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    latest bool
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    long_term_support bool
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    ml bool
    if we should limit the search only to ML runtimes. Default to false.
    photon bool
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala str
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    spark_version str
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.
    beta Boolean
    if we should limit the search only to runtimes that are in Beta stage. Default to false.
    genomics Boolean
    if we should limit the search only to Genomics (HLS) runtimes. Default to false.
    gpu Boolean
    if we should limit the search only to runtimes that support GPUs. Default to false.
    graviton Boolean
    if we should limit the search only to runtimes supporting AWS Graviton CPUs. Default to false. Deprecated with DBR 14.0 release. DBR version compiled for Graviton will be automatically installed when nodes with Graviton CPUs are specified in the cluster configuration.

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    id String
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    latest Boolean
    if we should return only the latest version if there is more than one result. Default to true. If set to false and multiple versions are matching, throws an error.
    longTermSupport Boolean
    if we should limit the search only to LTS (long term support) & ESR (extended support) versions. Default to false.
    ml Boolean
    if we should limit the search only to ML runtimes. Default to false.
    photon Boolean
    if we should limit the search only to Photon runtimes. Default to false. Deprecated with DBR 14.0 release. Specify runtime_engine=\"PHOTON\" in the cluster configuration instead!

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala String
    if we should limit the search only to runtimes that are based on specific Scala version. Default to 2.12.
    sparkVersion String
    if we should limit the search only to runtimes that are based on specific Spark version. Default to empty string. It could be specified as 3, or 3.0, or full version, like, 3.0.1.

    getSparkVersion Result

    The following output properties are available:

    Id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    Beta bool
    Genomics bool
    Gpu bool
    Graviton bool

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    Latest bool
    LongTermSupport bool
    Ml bool
    Photon bool

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    Scala string
    SparkVersion string
    Id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    Beta bool
    Genomics bool
    Gpu bool
    Graviton bool

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    Latest bool
    LongTermSupport bool
    Ml bool
    Photon bool

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    Scala string
    SparkVersion string
    id String
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    beta Boolean
    genomics Boolean
    gpu Boolean
    graviton Boolean

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    latest Boolean
    longTermSupport Boolean
    ml Boolean
    photon Boolean

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala String
    sparkVersion String
    id string
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    beta boolean
    genomics boolean
    gpu boolean
    graviton boolean

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    latest boolean
    longTermSupport boolean
    ml boolean
    photon boolean

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala string
    sparkVersion string
    id str
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    beta bool
    genomics bool
    gpu bool
    graviton bool

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    latest bool
    long_term_support bool
    ml bool
    photon bool

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala str
    spark_version str
    id String
    Databricks Runtime version, that can be used as spark_version field in databricks_job, databricks_cluster, or databricks_instance_pool.
    beta Boolean
    genomics Boolean
    gpu Boolean
    graviton Boolean

    Deprecated: Not required anymore - it's automatically enabled on the Graviton-based node types

    latest Boolean
    longTermSupport Boolean
    ml Boolean
    photon Boolean

    Deprecated: Specify runtime_engine="PHOTON" in the cluster configuration

    scala String
    sparkVersion String

    Package Details

    Repository
    databricks pulumi/pulumi-databricks
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the databricks Terraform Provider.
    databricks logo
    Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi