1. Packages
  2. Databricks
  3. API Docs
  4. getMlflowModels
Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi

databricks.getMlflowModels

Explore with Pulumi AI

databricks logo
Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi

    Note This data source could be only used with workspace-level provider!

    Retrieves a list of databricks.MlflowModel objects, that were created by Pulumi or manually, so that special handling could be applied.

    Example Usage

    import * as pulumi from "@pulumi/pulumi";
    import * as databricks from "@pulumi/databricks";
    
    const this = databricks.getMlflowModels({});
    export const model = _this;
    
    import pulumi
    import pulumi_databricks as databricks
    
    this = databricks.get_mlflow_models()
    pulumi.export("model", this)
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		this, err := databricks.GetMlflowModels(ctx, &databricks.GetMlflowModelsArgs{}, nil)
    		if err != nil {
    			return err
    		}
    		ctx.Export("model", this)
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Databricks = Pulumi.Databricks;
    
    return await Deployment.RunAsync(() => 
    {
        var @this = Databricks.GetMlflowModels.Invoke();
    
        return new Dictionary<string, object?>
        {
            ["model"] = @this,
        };
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.databricks.DatabricksFunctions;
    import com.pulumi.databricks.inputs.GetMlflowModelsArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var this = DatabricksFunctions.getMlflowModels();
    
            ctx.export("model", this_);
        }
    }
    
    variables:
      this:
        fn::invoke:
          Function: databricks:getMlflowModels
          Arguments: {}
    outputs:
      model: ${this}
    

    Using getMlflowModels

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getMlflowModels(args: GetMlflowModelsArgs, opts?: InvokeOptions): Promise<GetMlflowModelsResult>
    function getMlflowModelsOutput(args: GetMlflowModelsOutputArgs, opts?: InvokeOptions): Output<GetMlflowModelsResult>
    def get_mlflow_models(names: Optional[Sequence[str]] = None,
                          opts: Optional[InvokeOptions] = None) -> GetMlflowModelsResult
    def get_mlflow_models_output(names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None,
                          opts: Optional[InvokeOptions] = None) -> Output[GetMlflowModelsResult]
    func GetMlflowModels(ctx *Context, args *GetMlflowModelsArgs, opts ...InvokeOption) (*GetMlflowModelsResult, error)
    func GetMlflowModelsOutput(ctx *Context, args *GetMlflowModelsOutputArgs, opts ...InvokeOption) GetMlflowModelsResultOutput

    > Note: This function is named GetMlflowModels in the Go SDK.

    public static class GetMlflowModels 
    {
        public static Task<GetMlflowModelsResult> InvokeAsync(GetMlflowModelsArgs args, InvokeOptions? opts = null)
        public static Output<GetMlflowModelsResult> Invoke(GetMlflowModelsInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetMlflowModelsResult> getMlflowModels(GetMlflowModelsArgs args, InvokeOptions options)
    // Output-based functions aren't available in Java yet
    
    fn::invoke:
      function: databricks:index/getMlflowModels:getMlflowModels
      arguments:
        # arguments dictionary

    The following arguments are supported:

    Names List<string>
    List of names of databricks_mlflow_model
    Names []string
    List of names of databricks_mlflow_model
    names List<String>
    List of names of databricks_mlflow_model
    names string[]
    List of names of databricks_mlflow_model
    names Sequence[str]
    List of names of databricks_mlflow_model
    names List<String>
    List of names of databricks_mlflow_model

    getMlflowModels Result

    The following output properties are available:

    Id string
    The provider-assigned unique ID for this managed resource.
    Names List<string>
    List of names of databricks_mlflow_model
    Id string
    The provider-assigned unique ID for this managed resource.
    Names []string
    List of names of databricks_mlflow_model
    id String
    The provider-assigned unique ID for this managed resource.
    names List<String>
    List of names of databricks_mlflow_model
    id string
    The provider-assigned unique ID for this managed resource.
    names string[]
    List of names of databricks_mlflow_model
    id str
    The provider-assigned unique ID for this managed resource.
    names Sequence[str]
    List of names of databricks_mlflow_model
    id String
    The provider-assigned unique ID for this managed resource.
    names List<String>
    List of names of databricks_mlflow_model

    Package Details

    Repository
    databricks pulumi/pulumi-databricks
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the databricks Terraform Provider.
    databricks logo
    Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi