Databricks v1.56.0 published on Tuesday, Nov 12, 2024 by Pulumi
databricks.getMlflowModel
Explore with Pulumi AI
Note If you have a fully automated setup with workspaces created by databricks.MwsWorkspaces or azurerm_databricks_workspace, please make sure to add depends_on attribute in order to prevent default auth: cannot configure default credentials errors.
Retrieves the settings of databricks.MlflowModel by name.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const thisMlflowModel = new databricks.MlflowModel("this", {
name: "My MLflow Model",
description: "My MLflow model description",
tags: [
{
key: "key1",
value: "value1",
},
{
key: "key2",
value: "value2",
},
],
});
const this = databricks.getMlflowModel({
name: "My MLflow Model",
});
export const model = _this;
import pulumi
import pulumi_databricks as databricks
this_mlflow_model = databricks.MlflowModel("this",
name="My MLflow Model",
description="My MLflow model description",
tags=[
{
"key": "key1",
"value": "value1",
},
{
"key": "key2",
"value": "value2",
},
])
this = databricks.get_mlflow_model(name="My MLflow Model")
pulumi.export("model", this)
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := databricks.NewMlflowModel(ctx, "this", &databricks.MlflowModelArgs{
Name: pulumi.String("My MLflow Model"),
Description: pulumi.String("My MLflow model description"),
Tags: databricks.MlflowModelTagArray{
&databricks.MlflowModelTagArgs{
Key: pulumi.String("key1"),
Value: pulumi.String("value1"),
},
&databricks.MlflowModelTagArgs{
Key: pulumi.String("key2"),
Value: pulumi.String("value2"),
},
},
})
if err != nil {
return err
}
this, err := databricks.LookupMlflowModel(ctx, &databricks.LookupMlflowModelArgs{
Name: "My MLflow Model",
}, nil)
if err != nil {
return err
}
ctx.Export("model", this)
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var thisMlflowModel = new Databricks.MlflowModel("this", new()
{
Name = "My MLflow Model",
Description = "My MLflow model description",
Tags = new[]
{
new Databricks.Inputs.MlflowModelTagArgs
{
Key = "key1",
Value = "value1",
},
new Databricks.Inputs.MlflowModelTagArgs
{
Key = "key2",
Value = "value2",
},
},
});
var @this = Databricks.GetMlflowModel.Invoke(new()
{
Name = "My MLflow Model",
});
return new Dictionary<string, object?>
{
["model"] = @this,
};
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.MlflowModel;
import com.pulumi.databricks.MlflowModelArgs;
import com.pulumi.databricks.inputs.MlflowModelTagArgs;
import com.pulumi.databricks.DatabricksFunctions;
import com.pulumi.databricks.inputs.GetMlflowModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var thisMlflowModel = new MlflowModel("thisMlflowModel", MlflowModelArgs.builder()
.name("My MLflow Model")
.description("My MLflow model description")
.tags(
MlflowModelTagArgs.builder()
.key("key1")
.value("value1")
.build(),
MlflowModelTagArgs.builder()
.key("key2")
.value("value2")
.build())
.build());
final var this = DatabricksFunctions.getMlflowModel(GetMlflowModelArgs.builder()
.name("My MLflow Model")
.build());
ctx.export("model", this_);
}
}
resources:
thisMlflowModel:
type: databricks:MlflowModel
name: this
properties:
name: My MLflow Model
description: My MLflow model description
tags:
- key: key1
value: value1
- key: key2
value: value2
variables:
this:
fn::invoke:
Function: databricks:getMlflowModel
Arguments:
name: My MLflow Model
outputs:
model: ${this}
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const this = databricks.getMlflowModel({
name: "My MLflow Model with multiple versions",
});
const thisModelServing = new databricks.ModelServing("this", {
name: "model-serving-endpoint",
config: {
servedModels: [{
name: "model_serving_prod",
modelName: _this.then(_this => _this.name),
modelVersion: _this.then(_this => _this.latestVersions?.[0]?.version),
workloadSize: "Small",
scaleToZeroEnabled: true,
}],
},
});
import pulumi
import pulumi_databricks as databricks
this = databricks.get_mlflow_model(name="My MLflow Model with multiple versions")
this_model_serving = databricks.ModelServing("this",
name="model-serving-endpoint",
config={
"served_models": [{
"name": "model_serving_prod",
"model_name": this.name,
"model_version": this.latest_versions[0].version,
"workload_size": "Small",
"scale_to_zero_enabled": True,
}],
})
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
this, err := databricks.LookupMlflowModel(ctx, &databricks.LookupMlflowModelArgs{
Name: "My MLflow Model with multiple versions",
}, nil)
if err != nil {
return err
}
_, err = databricks.NewModelServing(ctx, "this", &databricks.ModelServingArgs{
Name: pulumi.String("model-serving-endpoint"),
Config: &databricks.ModelServingConfigArgs{
ServedModels: databricks.ModelServingConfigServedModelArray{
&databricks.ModelServingConfigServedModelArgs{
Name: pulumi.String("model_serving_prod"),
ModelName: pulumi.String(this.Name),
ModelVersion: pulumi.String(this.LatestVersions[0].Version),
WorkloadSize: pulumi.String("Small"),
ScaleToZeroEnabled: pulumi.Bool(true),
},
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var @this = Databricks.GetMlflowModel.Invoke(new()
{
Name = "My MLflow Model with multiple versions",
});
var thisModelServing = new Databricks.ModelServing("this", new()
{
Name = "model-serving-endpoint",
Config = new Databricks.Inputs.ModelServingConfigArgs
{
ServedModels = new[]
{
new Databricks.Inputs.ModelServingConfigServedModelArgs
{
Name = "model_serving_prod",
ModelName = @this.Apply(@this => @this.Apply(getMlflowModelResult => getMlflowModelResult.Name)),
ModelVersion = @this.Apply(@this => @this.Apply(getMlflowModelResult => getMlflowModelResult.LatestVersions[0]?.Version)),
WorkloadSize = "Small",
ScaleToZeroEnabled = true,
},
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.DatabricksFunctions;
import com.pulumi.databricks.inputs.GetMlflowModelArgs;
import com.pulumi.databricks.ModelServing;
import com.pulumi.databricks.ModelServingArgs;
import com.pulumi.databricks.inputs.ModelServingConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var this = DatabricksFunctions.getMlflowModel(GetMlflowModelArgs.builder()
.name("My MLflow Model with multiple versions")
.build());
var thisModelServing = new ModelServing("thisModelServing", ModelServingArgs.builder()
.name("model-serving-endpoint")
.config(ModelServingConfigArgs.builder()
.servedModels(ModelServingConfigServedModelArgs.builder()
.name("model_serving_prod")
.modelName(this_.name())
.modelVersion(this_.latestVersions()[0].version())
.workloadSize("Small")
.scaleToZeroEnabled(true)
.build())
.build())
.build());
}
}
resources:
thisModelServing:
type: databricks:ModelServing
name: this
properties:
name: model-serving-endpoint
config:
servedModels:
- name: model_serving_prod
modelName: ${this.name}
modelVersion: ${this.latestVersions[0].version}
workloadSize: Small
scaleToZeroEnabled: true
variables:
this:
fn::invoke:
Function: databricks:getMlflowModel
Arguments:
name: My MLflow Model with multiple versions
Using getMlflowModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getMlflowModel(args: GetMlflowModelArgs, opts?: InvokeOptions): Promise<GetMlflowModelResult>
function getMlflowModelOutput(args: GetMlflowModelOutputArgs, opts?: InvokeOptions): Output<GetMlflowModelResult>
def get_mlflow_model(description: Optional[str] = None,
latest_versions: Optional[Sequence[GetMlflowModelLatestVersion]] = None,
name: Optional[str] = None,
permission_level: Optional[str] = None,
tags: Optional[Sequence[GetMlflowModelTag]] = None,
user_id: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetMlflowModelResult
def get_mlflow_model_output(description: Optional[pulumi.Input[str]] = None,
latest_versions: Optional[pulumi.Input[Sequence[pulumi.Input[GetMlflowModelLatestVersionArgs]]]] = None,
name: Optional[pulumi.Input[str]] = None,
permission_level: Optional[pulumi.Input[str]] = None,
tags: Optional[pulumi.Input[Sequence[pulumi.Input[GetMlflowModelTagArgs]]]] = None,
user_id: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetMlflowModelResult]
func LookupMlflowModel(ctx *Context, args *LookupMlflowModelArgs, opts ...InvokeOption) (*LookupMlflowModelResult, error)
func LookupMlflowModelOutput(ctx *Context, args *LookupMlflowModelOutputArgs, opts ...InvokeOption) LookupMlflowModelResultOutput
> Note: This function is named LookupMlflowModel
in the Go SDK.
public static class GetMlflowModel
{
public static Task<GetMlflowModelResult> InvokeAsync(GetMlflowModelArgs args, InvokeOptions? opts = null)
public static Output<GetMlflowModelResult> Invoke(GetMlflowModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetMlflowModelResult> getMlflowModel(GetMlflowModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: databricks:index/getMlflowModel:getMlflowModel
arguments:
# arguments dictionary
The following arguments are supported:
- Name string
- Name of the registered model.
- Description string
- User-specified description for the object.
- Latest
Versions List<GetMlflow Model Latest Version> - Array of model versions, each the latest version for its stage.
- Permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Get
Mlflow Model Tag> - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- Name string
- Name of the registered model.
- Description string
- User-specified description for the object.
- Latest
Versions []GetMlflow Model Latest Version - Array of model versions, each the latest version for its stage.
- Permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- []Get
Mlflow Model Tag - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- name String
- Name of the registered model.
- description String
- User-specified description for the object.
- latest
Versions List<GetMlflow Model Latest Version> - Array of model versions, each the latest version for its stage.
- permission
Level String - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Get
Mlflow Model Tag> - Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
- name string
- Name of the registered model.
- description string
- User-specified description for the object.
- latest
Versions GetMlflow Model Latest Version[] - Array of model versions, each the latest version for its stage.
- permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- Get
Mlflow Model Tag[] - Array of tags associated with the model.
- user
Id string - The username of the user that created the object.
- name str
- Name of the registered model.
- description str
- User-specified description for the object.
- latest_
versions Sequence[GetMlflow Model Latest Version] - Array of model versions, each the latest version for its stage.
- permission_
level str - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- Sequence[Get
Mlflow Model Tag] - Array of tags associated with the model.
- user_
id str - The username of the user that created the object.
- name String
- Name of the registered model.
- description String
- User-specified description for the object.
- latest
Versions List<Property Map> - Array of model versions, each the latest version for its stage.
- permission
Level String - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Property Map>
- Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
getMlflowModel Result
The following output properties are available:
- Description string
- User-specified description for the object.
- Id string
- Unique identifier for the object.
- Latest
Versions List<GetMlflow Model Latest Version> - Array of model versions, each the latest version for its stage.
- Name string
- Name of the model.
- Permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Get
Mlflow Model Tag> - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- Description string
- User-specified description for the object.
- Id string
- Unique identifier for the object.
- Latest
Versions []GetMlflow Model Latest Version - Array of model versions, each the latest version for its stage.
- Name string
- Name of the model.
- Permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- []Get
Mlflow Model Tag - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- description String
- User-specified description for the object.
- id String
- Unique identifier for the object.
- latest
Versions List<GetMlflow Model Latest Version> - Array of model versions, each the latest version for its stage.
- name String
- Name of the model.
- permission
Level String - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Get
Mlflow Model Tag> - Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
- description string
- User-specified description for the object.
- id string
- Unique identifier for the object.
- latest
Versions GetMlflow Model Latest Version[] - Array of model versions, each the latest version for its stage.
- name string
- Name of the model.
- permission
Level string - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- Get
Mlflow Model Tag[] - Array of tags associated with the model.
- user
Id string - The username of the user that created the object.
- description str
- User-specified description for the object.
- id str
- Unique identifier for the object.
- latest_
versions Sequence[GetMlflow Model Latest Version] - Array of model versions, each the latest version for its stage.
- name str
- Name of the model.
- permission_
level str - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- Sequence[Get
Mlflow Model Tag] - Array of tags associated with the model.
- user_
id str - The username of the user that created the object.
- description String
- User-specified description for the object.
- id String
- Unique identifier for the object.
- latest
Versions List<Property Map> - Array of model versions, each the latest version for its stage.
- name String
- Name of the model.
- permission
Level String - Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions.
- List<Property Map>
- Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
Supporting Types
GetMlflowModelLatestVersion
- Creation
Timestamp int - Current
Stage string - Description string
- User-specified description for the object.
- Last
Updated intTimestamp - Name string
- Name of the registered model.
- Run
Id string - Run
Link string - Source string
- Status string
- Status
Message string - List<Get
Mlflow Model Latest Version Tag> - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- Version string
- Creation
Timestamp int - Current
Stage string - Description string
- User-specified description for the object.
- Last
Updated intTimestamp - Name string
- Name of the registered model.
- Run
Id string - Run
Link string - Source string
- Status string
- Status
Message string - []Get
Mlflow Model Latest Version Tag - Array of tags associated with the model.
- User
Id string - The username of the user that created the object.
- Version string
- creation
Timestamp Integer - current
Stage String - description String
- User-specified description for the object.
- last
Updated IntegerTimestamp - name String
- Name of the registered model.
- run
Id String - run
Link String - source String
- status String
- status
Message String - List<Get
Mlflow Model Latest Version Tag> - Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
- version String
- creation
Timestamp number - current
Stage string - description string
- User-specified description for the object.
- last
Updated numberTimestamp - name string
- Name of the registered model.
- run
Id string - run
Link string - source string
- status string
- status
Message string - Get
Mlflow Model Latest Version Tag[] - Array of tags associated with the model.
- user
Id string - The username of the user that created the object.
- version string
- creation_
timestamp int - current_
stage str - description str
- User-specified description for the object.
- last_
updated_ inttimestamp - name str
- Name of the registered model.
- run_
id str - run_
link str - source str
- status str
- status_
message str - Sequence[Get
Mlflow Model Latest Version Tag] - Array of tags associated with the model.
- user_
id str - The username of the user that created the object.
- version str
- creation
Timestamp Number - current
Stage String - description String
- User-specified description for the object.
- last
Updated NumberTimestamp - name String
- Name of the registered model.
- run
Id String - run
Link String - source String
- status String
- status
Message String - List<Property Map>
- Array of tags associated with the model.
- user
Id String - The username of the user that created the object.
- version String
GetMlflowModelLatestVersionTag
GetMlflowModelTag
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
databricks
Terraform Provider.