azure-native.machinelearning.Workspace
Explore with Pulumi AI
An object that represents a machine learning workspace. API Version: 2016-04-01.
Example Usage
WorkspaceCreate
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var workspace = new AzureNative.MachineLearning.Workspace("workspace", new()
{
Location = "West Europe",
OwnerEmail = "abc@microsoft.com",
ResourceGroupName = "myResourceGroup",
Tags =
{
{ "tagKey1", "TagValue1" },
},
UserStorageAccountId = "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage",
WorkspaceName = "testworkspace",
});
});
package main
import (
machinelearning "github.com/pulumi/pulumi-azure-native-sdk/machinelearning"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearning.NewWorkspace(ctx, "workspace", &machinelearning.WorkspaceArgs{
Location: pulumi.String("West Europe"),
OwnerEmail: pulumi.String("abc@microsoft.com"),
ResourceGroupName: pulumi.String("myResourceGroup"),
Tags: pulumi.StringMap{
"tagKey1": pulumi.String("TagValue1"),
},
UserStorageAccountId: pulumi.String("/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage"),
WorkspaceName: pulumi.String("testworkspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearning.Workspace;
import com.pulumi.azurenative.machinelearning.WorkspaceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var workspace = new Workspace("workspace", WorkspaceArgs.builder()
.location("West Europe")
.ownerEmail("abc@microsoft.com")
.resourceGroupName("myResourceGroup")
.tags(Map.of("tagKey1", "TagValue1"))
.userStorageAccountId("/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage")
.workspaceName("testworkspace")
.build());
}
}
import pulumi
import pulumi_azure_native as azure_native
workspace = azure_native.machinelearning.Workspace("workspace",
location="West Europe",
owner_email="abc@microsoft.com",
resource_group_name="myResourceGroup",
tags={
"tagKey1": "TagValue1",
},
user_storage_account_id="/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage",
workspace_name="testworkspace")
import * as pulumi from "@pulumi/pulumi";
import * as azure_native from "@pulumi/azure-native";
const workspace = new azure_native.machinelearning.Workspace("workspace", {
location: "West Europe",
ownerEmail: "abc@microsoft.com",
resourceGroupName: "myResourceGroup",
tags: {
tagKey1: "TagValue1",
},
userStorageAccountId: "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage",
workspaceName: "testworkspace",
});
resources:
workspace:
type: azure-native:machinelearning:Workspace
properties:
location: West Europe
ownerEmail: abc@microsoft.com
resourceGroupName: myResourceGroup
tags:
tagKey1: TagValue1
userStorageAccountId: /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Storage/storageAccounts/teststorage
workspaceName: testworkspace
Create Workspace Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Workspace(name: string, args: WorkspaceArgs, opts?: CustomResourceOptions);
@overload
def Workspace(resource_name: str,
args: WorkspaceArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Workspace(resource_name: str,
opts: Optional[ResourceOptions] = None,
owner_email: Optional[str] = None,
resource_group_name: Optional[str] = None,
user_storage_account_id: Optional[str] = None,
key_vault_identifier_id: Optional[str] = None,
location: Optional[str] = None,
tags: Optional[Mapping[str, str]] = None,
workspace_name: Optional[str] = None)
func NewWorkspace(ctx *Context, name string, args WorkspaceArgs, opts ...ResourceOption) (*Workspace, error)
public Workspace(string name, WorkspaceArgs args, CustomResourceOptions? opts = null)
public Workspace(String name, WorkspaceArgs args)
public Workspace(String name, WorkspaceArgs args, CustomResourceOptions options)
type: azure-native:machinelearning:Workspace
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args WorkspaceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args WorkspaceArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args WorkspaceArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args WorkspaceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args WorkspaceArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var exampleworkspaceResourceResourceFromMachinelearning = new AzureNative.Machinelearning.Workspace("exampleworkspaceResourceResourceFromMachinelearning", new()
{
OwnerEmail = "string",
ResourceGroupName = "string",
UserStorageAccountId = "string",
KeyVaultIdentifierId = "string",
Location = "string",
Tags =
{
{ "string", "string" },
},
WorkspaceName = "string",
});
example, err := machinelearning.NewWorkspace(ctx, "exampleworkspaceResourceResourceFromMachinelearning", &machinelearning.WorkspaceArgs{
OwnerEmail: "string",
ResourceGroupName: "string",
UserStorageAccountId: "string",
KeyVaultIdentifierId: "string",
Location: "string",
Tags: map[string]interface{}{
"string": "string",
},
WorkspaceName: "string",
})
var exampleworkspaceResourceResourceFromMachinelearning = new Workspace("exampleworkspaceResourceResourceFromMachinelearning", WorkspaceArgs.builder()
.ownerEmail("string")
.resourceGroupName("string")
.userStorageAccountId("string")
.keyVaultIdentifierId("string")
.location("string")
.tags(%!v(PANIC=Format method: runtime error: invalid memory address or nil pointer dereference))
.workspaceName("string")
.build());
exampleworkspace_resource_resource_from_machinelearning = azure_native.machinelearning.Workspace("exampleworkspaceResourceResourceFromMachinelearning",
owner_email=string,
resource_group_name=string,
user_storage_account_id=string,
key_vault_identifier_id=string,
location=string,
tags={
string: string,
},
workspace_name=string)
const exampleworkspaceResourceResourceFromMachinelearning = new azure_native.machinelearning.Workspace("exampleworkspaceResourceResourceFromMachinelearning", {
ownerEmail: "string",
resourceGroupName: "string",
userStorageAccountId: "string",
keyVaultIdentifierId: "string",
location: "string",
tags: {
string: "string",
},
workspaceName: "string",
});
type: azure-native:machinelearning:Workspace
properties:
keyVaultIdentifierId: string
location: string
ownerEmail: string
resourceGroupName: string
tags:
string: string
userStorageAccountId: string
workspaceName: string
Workspace Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Workspace resource accepts the following input properties:
- Owner
Email string - The email id of the owner for this workspace.
- Resource
Group stringName - The name of the resource group to which the machine learning workspace belongs.
- User
Storage stringAccount Id - The fully qualified arm id of the storage account associated with this workspace.
- Key
Vault stringIdentifier Id - The key vault identifier used for encrypted workspaces.
- Location string
- The location of the resource. This cannot be changed after the resource is created.
- Dictionary<string, string>
- The tags of the resource.
- Workspace
Name string - The name of the machine learning workspace.
- Owner
Email string - The email id of the owner for this workspace.
- Resource
Group stringName - The name of the resource group to which the machine learning workspace belongs.
- User
Storage stringAccount Id - The fully qualified arm id of the storage account associated with this workspace.
- Key
Vault stringIdentifier Id - The key vault identifier used for encrypted workspaces.
- Location string
- The location of the resource. This cannot be changed after the resource is created.
- map[string]string
- The tags of the resource.
- Workspace
Name string - The name of the machine learning workspace.
- owner
Email String - The email id of the owner for this workspace.
- resource
Group StringName - The name of the resource group to which the machine learning workspace belongs.
- user
Storage StringAccount Id - The fully qualified arm id of the storage account associated with this workspace.
- key
Vault StringIdentifier Id - The key vault identifier used for encrypted workspaces.
- location String
- The location of the resource. This cannot be changed after the resource is created.
- Map<String,String>
- The tags of the resource.
- workspace
Name String - The name of the machine learning workspace.
- owner
Email string - The email id of the owner for this workspace.
- resource
Group stringName - The name of the resource group to which the machine learning workspace belongs.
- user
Storage stringAccount Id - The fully qualified arm id of the storage account associated with this workspace.
- key
Vault stringIdentifier Id - The key vault identifier used for encrypted workspaces.
- location string
- The location of the resource. This cannot be changed after the resource is created.
- {[key: string]: string}
- The tags of the resource.
- workspace
Name string - The name of the machine learning workspace.
- owner_
email str - The email id of the owner for this workspace.
- resource_
group_ strname - The name of the resource group to which the machine learning workspace belongs.
- user_
storage_ straccount_ id - The fully qualified arm id of the storage account associated with this workspace.
- key_
vault_ stridentifier_ id - The key vault identifier used for encrypted workspaces.
- location str
- The location of the resource. This cannot be changed after the resource is created.
- Mapping[str, str]
- The tags of the resource.
- workspace_
name str - The name of the machine learning workspace.
- owner
Email String - The email id of the owner for this workspace.
- resource
Group StringName - The name of the resource group to which the machine learning workspace belongs.
- user
Storage StringAccount Id - The fully qualified arm id of the storage account associated with this workspace.
- key
Vault StringIdentifier Id - The key vault identifier used for encrypted workspaces.
- location String
- The location of the resource. This cannot be changed after the resource is created.
- Map<String>
- The tags of the resource.
- workspace
Name String - The name of the machine learning workspace.
Outputs
All input properties are implicitly available as output properties. Additionally, the Workspace resource produces the following output properties:
- Creation
Time string - The creation time for this workspace resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- The name of the resource.
- Studio
Endpoint string - The regional endpoint for the machine learning studio service which hosts this workspace.
- Type string
- The type of the resource.
- Workspace
Id string - The immutable id associated with this workspace.
- Workspace
State string - The current state of workspace resource.
- Workspace
Type string - The type of this workspace.
- Creation
Time string - The creation time for this workspace resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- The name of the resource.
- Studio
Endpoint string - The regional endpoint for the machine learning studio service which hosts this workspace.
- Type string
- The type of the resource.
- Workspace
Id string - The immutable id associated with this workspace.
- Workspace
State string - The current state of workspace resource.
- Workspace
Type string - The type of this workspace.
- creation
Time String - The creation time for this workspace resource.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- The name of the resource.
- studio
Endpoint String - The regional endpoint for the machine learning studio service which hosts this workspace.
- type String
- The type of the resource.
- workspace
Id String - The immutable id associated with this workspace.
- workspace
State String - The current state of workspace resource.
- workspace
Type String - The type of this workspace.
- creation
Time string - The creation time for this workspace resource.
- id string
- The provider-assigned unique ID for this managed resource.
- name string
- The name of the resource.
- studio
Endpoint string - The regional endpoint for the machine learning studio service which hosts this workspace.
- type string
- The type of the resource.
- workspace
Id string - The immutable id associated with this workspace.
- workspace
State string - The current state of workspace resource.
- workspace
Type string - The type of this workspace.
- creation_
time str - The creation time for this workspace resource.
- id str
- The provider-assigned unique ID for this managed resource.
- name str
- The name of the resource.
- studio_
endpoint str - The regional endpoint for the machine learning studio service which hosts this workspace.
- type str
- The type of the resource.
- workspace_
id str - The immutable id associated with this workspace.
- workspace_
state str - The current state of workspace resource.
- workspace_
type str - The type of this workspace.
- creation
Time String - The creation time for this workspace resource.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- The name of the resource.
- studio
Endpoint String - The regional endpoint for the machine learning studio service which hosts this workspace.
- type String
- The type of the resource.
- workspace
Id String - The immutable id associated with this workspace.
- workspace
State String - The current state of workspace resource.
- workspace
Type String - The type of this workspace.
Import
An existing resource can be imported using its type token, name, and identifier, e.g.
$ pulumi import azure-native:machinelearning:Workspace testworkspace /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.MachineLearning/workspaces/testworkspace
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- azure-native-v1 pulumi/pulumi-azure-native
- License
- Apache-2.0