aws.sagemaker.NotebookInstance
Explore with Pulumi AI
Provides a SageMaker Notebook Instance resource.
Example Usage
Basic usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const ni = new aws.sagemaker.NotebookInstance("ni", {
name: "my-notebook-instance",
roleArn: role.arn,
instanceType: "ml.t2.medium",
tags: {
Name: "foo",
},
});
import pulumi
import pulumi_aws as aws
ni = aws.sagemaker.NotebookInstance("ni",
name="my-notebook-instance",
role_arn=role["arn"],
instance_type="ml.t2.medium",
tags={
"Name": "foo",
})
package main
import (
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := sagemaker.NewNotebookInstance(ctx, "ni", &sagemaker.NotebookInstanceArgs{
Name: pulumi.String("my-notebook-instance"),
RoleArn: pulumi.Any(role.Arn),
InstanceType: pulumi.String("ml.t2.medium"),
Tags: pulumi.StringMap{
"Name": pulumi.String("foo"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() =>
{
var ni = new Aws.Sagemaker.NotebookInstance("ni", new()
{
Name = "my-notebook-instance",
RoleArn = role.Arn,
InstanceType = "ml.t2.medium",
Tags =
{
{ "Name", "foo" },
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.sagemaker.NotebookInstance;
import com.pulumi.aws.sagemaker.NotebookInstanceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var ni = new NotebookInstance("ni", NotebookInstanceArgs.builder()
.name("my-notebook-instance")
.roleArn(role.arn())
.instanceType("ml.t2.medium")
.tags(Map.of("Name", "foo"))
.build());
}
}
resources:
ni:
type: aws:sagemaker:NotebookInstance
properties:
name: my-notebook-instance
roleArn: ${role.arn}
instanceType: ml.t2.medium
tags:
Name: foo
Code repository usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const example = new aws.sagemaker.CodeRepository("example", {
codeRepositoryName: "my-notebook-instance-code-repo",
gitConfig: {
repositoryUrl: "https://github.com/github/docs.git",
},
});
const ni = new aws.sagemaker.NotebookInstance("ni", {
name: "my-notebook-instance",
roleArn: role.arn,
instanceType: "ml.t2.medium",
defaultCodeRepository: example.codeRepositoryName,
tags: {
Name: "foo",
},
});
import pulumi
import pulumi_aws as aws
example = aws.sagemaker.CodeRepository("example",
code_repository_name="my-notebook-instance-code-repo",
git_config={
"repository_url": "https://github.com/github/docs.git",
})
ni = aws.sagemaker.NotebookInstance("ni",
name="my-notebook-instance",
role_arn=role["arn"],
instance_type="ml.t2.medium",
default_code_repository=example.code_repository_name,
tags={
"Name": "foo",
})
package main
import (
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
example, err := sagemaker.NewCodeRepository(ctx, "example", &sagemaker.CodeRepositoryArgs{
CodeRepositoryName: pulumi.String("my-notebook-instance-code-repo"),
GitConfig: &sagemaker.CodeRepositoryGitConfigArgs{
RepositoryUrl: pulumi.String("https://github.com/github/docs.git"),
},
})
if err != nil {
return err
}
_, err = sagemaker.NewNotebookInstance(ctx, "ni", &sagemaker.NotebookInstanceArgs{
Name: pulumi.String("my-notebook-instance"),
RoleArn: pulumi.Any(role.Arn),
InstanceType: pulumi.String("ml.t2.medium"),
DefaultCodeRepository: example.CodeRepositoryName,
Tags: pulumi.StringMap{
"Name": pulumi.String("foo"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() =>
{
var example = new Aws.Sagemaker.CodeRepository("example", new()
{
CodeRepositoryName = "my-notebook-instance-code-repo",
GitConfig = new Aws.Sagemaker.Inputs.CodeRepositoryGitConfigArgs
{
RepositoryUrl = "https://github.com/github/docs.git",
},
});
var ni = new Aws.Sagemaker.NotebookInstance("ni", new()
{
Name = "my-notebook-instance",
RoleArn = role.Arn,
InstanceType = "ml.t2.medium",
DefaultCodeRepository = example.CodeRepositoryName,
Tags =
{
{ "Name", "foo" },
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.sagemaker.CodeRepository;
import com.pulumi.aws.sagemaker.CodeRepositoryArgs;
import com.pulumi.aws.sagemaker.inputs.CodeRepositoryGitConfigArgs;
import com.pulumi.aws.sagemaker.NotebookInstance;
import com.pulumi.aws.sagemaker.NotebookInstanceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var example = new CodeRepository("example", CodeRepositoryArgs.builder()
.codeRepositoryName("my-notebook-instance-code-repo")
.gitConfig(CodeRepositoryGitConfigArgs.builder()
.repositoryUrl("https://github.com/github/docs.git")
.build())
.build());
var ni = new NotebookInstance("ni", NotebookInstanceArgs.builder()
.name("my-notebook-instance")
.roleArn(role.arn())
.instanceType("ml.t2.medium")
.defaultCodeRepository(example.codeRepositoryName())
.tags(Map.of("Name", "foo"))
.build());
}
}
resources:
example:
type: aws:sagemaker:CodeRepository
properties:
codeRepositoryName: my-notebook-instance-code-repo
gitConfig:
repositoryUrl: https://github.com/github/docs.git
ni:
type: aws:sagemaker:NotebookInstance
properties:
name: my-notebook-instance
roleArn: ${role.arn}
instanceType: ml.t2.medium
defaultCodeRepository: ${example.codeRepositoryName}
tags:
Name: foo
Create NotebookInstance Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new NotebookInstance(name: string, args: NotebookInstanceArgs, opts?: CustomResourceOptions);
@overload
def NotebookInstance(resource_name: str,
args: NotebookInstanceArgs,
opts: Optional[ResourceOptions] = None)
@overload
def NotebookInstance(resource_name: str,
opts: Optional[ResourceOptions] = None,
instance_type: Optional[str] = None,
role_arn: Optional[str] = None,
name: Optional[str] = None,
platform_identifier: Optional[str] = None,
instance_metadata_service_configuration: Optional[NotebookInstanceInstanceMetadataServiceConfigurationArgs] = None,
default_code_repository: Optional[str] = None,
kms_key_id: Optional[str] = None,
lifecycle_config_name: Optional[str] = None,
accelerator_types: Optional[Sequence[str]] = None,
direct_internet_access: Optional[str] = None,
additional_code_repositories: Optional[Sequence[str]] = None,
root_access: Optional[str] = None,
security_groups: Optional[Sequence[str]] = None,
subnet_id: Optional[str] = None,
tags: Optional[Mapping[str, str]] = None,
volume_size: Optional[int] = None)
func NewNotebookInstance(ctx *Context, name string, args NotebookInstanceArgs, opts ...ResourceOption) (*NotebookInstance, error)
public NotebookInstance(string name, NotebookInstanceArgs args, CustomResourceOptions? opts = null)
public NotebookInstance(String name, NotebookInstanceArgs args)
public NotebookInstance(String name, NotebookInstanceArgs args, CustomResourceOptions options)
type: aws:sagemaker:NotebookInstance
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var notebookInstanceResource = new Aws.Sagemaker.NotebookInstance("notebookInstanceResource", new()
{
InstanceType = "string",
RoleArn = "string",
Name = "string",
PlatformIdentifier = "string",
InstanceMetadataServiceConfiguration = new Aws.Sagemaker.Inputs.NotebookInstanceInstanceMetadataServiceConfigurationArgs
{
MinimumInstanceMetadataServiceVersion = "string",
},
DefaultCodeRepository = "string",
KmsKeyId = "string",
LifecycleConfigName = "string",
AcceleratorTypes = new[]
{
"string",
},
DirectInternetAccess = "string",
AdditionalCodeRepositories = new[]
{
"string",
},
RootAccess = "string",
SecurityGroups = new[]
{
"string",
},
SubnetId = "string",
Tags =
{
{ "string", "string" },
},
VolumeSize = 0,
});
example, err := sagemaker.NewNotebookInstance(ctx, "notebookInstanceResource", &sagemaker.NotebookInstanceArgs{
InstanceType: pulumi.String("string"),
RoleArn: pulumi.String("string"),
Name: pulumi.String("string"),
PlatformIdentifier: pulumi.String("string"),
InstanceMetadataServiceConfiguration: &sagemaker.NotebookInstanceInstanceMetadataServiceConfigurationArgs{
MinimumInstanceMetadataServiceVersion: pulumi.String("string"),
},
DefaultCodeRepository: pulumi.String("string"),
KmsKeyId: pulumi.String("string"),
LifecycleConfigName: pulumi.String("string"),
AcceleratorTypes: pulumi.StringArray{
pulumi.String("string"),
},
DirectInternetAccess: pulumi.String("string"),
AdditionalCodeRepositories: pulumi.StringArray{
pulumi.String("string"),
},
RootAccess: pulumi.String("string"),
SecurityGroups: pulumi.StringArray{
pulumi.String("string"),
},
SubnetId: pulumi.String("string"),
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
VolumeSize: pulumi.Int(0),
})
var notebookInstanceResource = new NotebookInstance("notebookInstanceResource", NotebookInstanceArgs.builder()
.instanceType("string")
.roleArn("string")
.name("string")
.platformIdentifier("string")
.instanceMetadataServiceConfiguration(NotebookInstanceInstanceMetadataServiceConfigurationArgs.builder()
.minimumInstanceMetadataServiceVersion("string")
.build())
.defaultCodeRepository("string")
.kmsKeyId("string")
.lifecycleConfigName("string")
.acceleratorTypes("string")
.directInternetAccess("string")
.additionalCodeRepositories("string")
.rootAccess("string")
.securityGroups("string")
.subnetId("string")
.tags(Map.of("string", "string"))
.volumeSize(0)
.build());
notebook_instance_resource = aws.sagemaker.NotebookInstance("notebookInstanceResource",
instance_type="string",
role_arn="string",
name="string",
platform_identifier="string",
instance_metadata_service_configuration={
"minimum_instance_metadata_service_version": "string",
},
default_code_repository="string",
kms_key_id="string",
lifecycle_config_name="string",
accelerator_types=["string"],
direct_internet_access="string",
additional_code_repositories=["string"],
root_access="string",
security_groups=["string"],
subnet_id="string",
tags={
"string": "string",
},
volume_size=0)
const notebookInstanceResource = new aws.sagemaker.NotebookInstance("notebookInstanceResource", {
instanceType: "string",
roleArn: "string",
name: "string",
platformIdentifier: "string",
instanceMetadataServiceConfiguration: {
minimumInstanceMetadataServiceVersion: "string",
},
defaultCodeRepository: "string",
kmsKeyId: "string",
lifecycleConfigName: "string",
acceleratorTypes: ["string"],
directInternetAccess: "string",
additionalCodeRepositories: ["string"],
rootAccess: "string",
securityGroups: ["string"],
subnetId: "string",
tags: {
string: "string",
},
volumeSize: 0,
});
type: aws:sagemaker:NotebookInstance
properties:
acceleratorTypes:
- string
additionalCodeRepositories:
- string
defaultCodeRepository: string
directInternetAccess: string
instanceMetadataServiceConfiguration:
minimumInstanceMetadataServiceVersion: string
instanceType: string
kmsKeyId: string
lifecycleConfigName: string
name: string
platformIdentifier: string
roleArn: string
rootAccess: string
securityGroups:
- string
subnetId: string
tags:
string: string
volumeSize: 0
NotebookInstance Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The NotebookInstance resource accepts the following input properties:
- Instance
Type string - The name of ML compute instance type.
- Role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- Accelerator
Types List<string> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - Additional
Code List<string>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- Direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - Instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - Kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- Platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - Root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - Security
Groups List<string> - The associated security groups.
- Subnet
Id string - The VPC subnet ID.
- Dictionary<string, string>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Volume
Size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- Instance
Type string - The name of ML compute instance type.
- Role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- Accelerator
Types []string - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - Additional
Code []stringRepositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- Direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - Instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration Args - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - Kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- Platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - Root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - Security
Groups []string - The associated security groups.
- Subnet
Id string - The VPC subnet ID.
- map[string]string
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Volume
Size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instance
Type String - The name of ML compute instance type.
- role
Arn String - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- accelerator
Types List<String> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code List<String>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- default
Code StringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet StringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - kms
Key StringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config StringName - The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- platform
Identifier String - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - root
Access String - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups List<String> - The associated security groups.
- subnet
Id String - The VPC subnet ID.
- Map<String,String>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - volume
Size Integer - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instance
Type string - The name of ML compute instance type.
- role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- accelerator
Types string[] - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code string[]Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- name string
- The name of the notebook instance (must be unique).
- platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups string[] - The associated security groups.
- subnet
Id string - The VPC subnet ID.
- {[key: string]: string}
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - volume
Size number - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instance_
type str - The name of ML compute instance type.
- role_
arn str - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- accelerator_
types Sequence[str] - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional_
code_ Sequence[str]repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- default_
code_ strrepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct_
internet_ straccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance_
metadata_ Notebookservice_ configuration Instance Instance Metadata Service Configuration Args - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - kms_
key_ strid - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle_
config_ strname - The name of a lifecycle configuration to associate with the notebook instance.
- name str
- The name of the notebook instance (must be unique).
- platform_
identifier str - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - root_
access str - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security_
groups Sequence[str] - The associated security groups.
- subnet_
id str - The VPC subnet ID.
- Mapping[str, str]
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - volume_
size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instance
Type String - The name of ML compute instance type.
- role
Arn String - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- accelerator
Types List<String> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code List<String>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- default
Code StringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet StringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata Property MapService Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - kms
Key StringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config StringName - The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- platform
Identifier String - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - root
Access String - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups List<String> - The associated security groups.
- subnet
Id String - The VPC subnet ID.
- Map<String>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - volume
Size Number - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
Outputs
All input properties are implicitly available as output properties. Additionally, the NotebookInstance resource produces the following output properties:
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Id string
- The provider-assigned unique ID for this managed resource.
- Network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Id string
- The provider-assigned unique ID for this managed resource.
- Network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - map[string]string
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id String
- The provider-assigned unique ID for this managed resource.
- network
Interface StringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id string
- The provider-assigned unique ID for this managed resource.
- network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn str
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id str
- The provider-assigned unique ID for this managed resource.
- network_
interface_ strid - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url str
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id String
- The provider-assigned unique ID for this managed resource.
- network
Interface StringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Map<String>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
Look up Existing NotebookInstance Resource
Get an existing NotebookInstance resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: NotebookInstanceState, opts?: CustomResourceOptions): NotebookInstance
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
accelerator_types: Optional[Sequence[str]] = None,
additional_code_repositories: Optional[Sequence[str]] = None,
arn: Optional[str] = None,
default_code_repository: Optional[str] = None,
direct_internet_access: Optional[str] = None,
instance_metadata_service_configuration: Optional[NotebookInstanceInstanceMetadataServiceConfigurationArgs] = None,
instance_type: Optional[str] = None,
kms_key_id: Optional[str] = None,
lifecycle_config_name: Optional[str] = None,
name: Optional[str] = None,
network_interface_id: Optional[str] = None,
platform_identifier: Optional[str] = None,
role_arn: Optional[str] = None,
root_access: Optional[str] = None,
security_groups: Optional[Sequence[str]] = None,
subnet_id: Optional[str] = None,
tags: Optional[Mapping[str, str]] = None,
tags_all: Optional[Mapping[str, str]] = None,
url: Optional[str] = None,
volume_size: Optional[int] = None) -> NotebookInstance
func GetNotebookInstance(ctx *Context, name string, id IDInput, state *NotebookInstanceState, opts ...ResourceOption) (*NotebookInstance, error)
public static NotebookInstance Get(string name, Input<string> id, NotebookInstanceState? state, CustomResourceOptions? opts = null)
public static NotebookInstance get(String name, Output<String> id, NotebookInstanceState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Accelerator
Types List<string> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - Additional
Code List<string>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- Direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - Instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - Instance
Type string - The name of ML compute instance type.
- Kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- Network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - Role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- Root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - Security
Groups List<string> - The associated security groups.
- Subnet
Id string - The VPC subnet ID.
- Dictionary<string, string>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- Volume
Size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- Accelerator
Types []string - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - Additional
Code []stringRepositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- Direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - Instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration Args - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - Instance
Type string - The name of ML compute instance type.
- Kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- Network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - Platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - Role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- Root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - Security
Groups []string - The associated security groups.
- Subnet
Id string - The VPC subnet ID.
- map[string]string
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - map[string]string
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- Volume
Size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- accelerator
Types List<String> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code List<String>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- default
Code StringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet StringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - instance
Type String - The name of ML compute instance type.
- kms
Key StringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config StringName - The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- network
Interface StringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - platform
Identifier String - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - role
Arn String - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- root
Access String - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups List<String> - The associated security groups.
- subnet
Id String - The VPC subnet ID.
- Map<String,String>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volume
Size Integer - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- accelerator
Types string[] - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code string[]Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- default
Code stringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet stringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata NotebookService Configuration Instance Instance Metadata Service Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - instance
Type string - The name of ML compute instance type.
- kms
Key stringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config stringName - The name of a lifecycle configuration to associate with the notebook instance.
- name string
- The name of the notebook instance (must be unique).
- network
Interface stringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - platform
Identifier string - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - role
Arn string - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- root
Access string - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups string[] - The associated security groups.
- subnet
Id string - The VPC subnet ID.
- {[key: string]: string}
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volume
Size number - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- accelerator_
types Sequence[str] - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional_
code_ Sequence[str]repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn str
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- default_
code_ strrepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct_
internet_ straccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance_
metadata_ Notebookservice_ configuration Instance Instance Metadata Service Configuration Args - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - instance_
type str - The name of ML compute instance type.
- kms_
key_ strid - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle_
config_ strname - The name of a lifecycle configuration to associate with the notebook instance.
- name str
- The name of the notebook instance (must be unique).
- network_
interface_ strid - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - platform_
identifier str - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - role_
arn str - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- root_
access str - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security_
groups Sequence[str] - The associated security groups.
- subnet_
id str - The VPC subnet ID.
- Mapping[str, str]
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url str
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volume_
size int - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- accelerator
Types List<String> - A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values:
ml.eia1.medium
,ml.eia1.large
,ml.eia1.xlarge
,ml.eia2.medium
,ml.eia2.large
,ml.eia2.xlarge
. - additional
Code List<String>Repositories - An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- default
Code StringRepository - The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct
Internet StringAccess - Set to
Disabled
to disable internet access to notebook. Requiressecurity_groups
andsubnet_id
to be set. Supported values:Enabled
(Default) orDisabled
. If set toDisabled
, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. - instance
Metadata Property MapService Configuration - Information on the IMDS configuration of the notebook instance. Conflicts with
instance_metadata_service_configuration
. see details below. - instance
Type String - The name of ML compute instance type.
- kms
Key StringId - The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle
Config StringName - The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- network
Interface StringId - The network interface ID that Amazon SageMaker created at the time of creating the instance. Only available when setting
subnet_id
. - platform
Identifier String - The platform identifier of the notebook instance runtime environment. This value can be either
notebook-al1-v1
,notebook-al2-v1
, ornotebook-al2-v2
, depending on which version of Amazon Linux you require. - role
Arn String - The ARN of the IAM role to be used by the notebook instance which allows SageMaker to call other services on your behalf.
- root
Access String - Whether root access is
Enabled
orDisabled
for users of the notebook instance. The default value isEnabled
. - security
Groups List<String> - The associated security groups.
- subnet
Id String - The VPC subnet ID.
- Map<String>
- A map of tags to assign to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Map<String>
- A map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volume
Size Number - The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
Supporting Types
NotebookInstanceInstanceMetadataServiceConfiguration, NotebookInstanceInstanceMetadataServiceConfigurationArgs
- Minimum
Instance stringMetadata Service Version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
- Minimum
Instance stringMetadata Service Version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
- minimum
Instance StringMetadata Service Version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
- minimum
Instance stringMetadata Service Version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
- minimum_
instance_ strmetadata_ service_ version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
- minimum
Instance StringMetadata Service Version - Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are
1
and2
.
Import
Using pulumi import
, import SageMaker Notebook Instances using the name
. For example:
$ pulumi import aws:sagemaker/notebookInstance:NotebookInstance test_notebook_instance my-notebook-instance
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
aws
Terraform Provider.