1. Packages
  2. AWS
  3. API Docs
  4. sagemaker
  5. getPrebuiltEcrImage
AWS v6.60.0 published on Tuesday, Nov 19, 2024 by Pulumi

aws.sagemaker.getPrebuiltEcrImage

Explore with Pulumi AI

aws logo
AWS v6.60.0 published on Tuesday, Nov 19, 2024 by Pulumi

    Get information about prebuilt Amazon SageMaker Docker images.

    NOTE: The AWS provider creates a validly constructed registry_path but does not verify that the registry_path corresponds to an existing image. For example, using a registry_path containing an image_tag that does not correspond to a Docker image in the ECR repository, will result in an error.

    Example Usage

    Basic usage:

    import * as pulumi from "@pulumi/pulumi";
    import * as aws from "@pulumi/aws";
    
    const test = aws.sagemaker.getPrebuiltEcrImage({
        repositoryName: "sagemaker-scikit-learn",
        imageTag: "2.2-1.0.11.0",
    });
    
    import pulumi
    import pulumi_aws as aws
    
    test = aws.sagemaker.get_prebuilt_ecr_image(repository_name="sagemaker-scikit-learn",
        image_tag="2.2-1.0.11.0")
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := sagemaker.GetPrebuiltEcrImage(ctx, &sagemaker.GetPrebuiltEcrImageArgs{
    			RepositoryName: "sagemaker-scikit-learn",
    			ImageTag:       pulumi.StringRef("2.2-1.0.11.0"),
    		}, nil)
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Aws = Pulumi.Aws;
    
    return await Deployment.RunAsync(() => 
    {
        var test = Aws.Sagemaker.GetPrebuiltEcrImage.Invoke(new()
        {
            RepositoryName = "sagemaker-scikit-learn",
            ImageTag = "2.2-1.0.11.0",
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.aws.sagemaker.SagemakerFunctions;
    import com.pulumi.aws.sagemaker.inputs.GetPrebuiltEcrImageArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var test = SagemakerFunctions.getPrebuiltEcrImage(GetPrebuiltEcrImageArgs.builder()
                .repositoryName("sagemaker-scikit-learn")
                .imageTag("2.2-1.0.11.0")
                .build());
    
        }
    }
    
    variables:
      test:
        fn::invoke:
          Function: aws:sagemaker:getPrebuiltEcrImage
          Arguments:
            repositoryName: sagemaker-scikit-learn
            imageTag: 2.2-1.0.11.0
    

    Using getPrebuiltEcrImage

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getPrebuiltEcrImage(args: GetPrebuiltEcrImageArgs, opts?: InvokeOptions): Promise<GetPrebuiltEcrImageResult>
    function getPrebuiltEcrImageOutput(args: GetPrebuiltEcrImageOutputArgs, opts?: InvokeOptions): Output<GetPrebuiltEcrImageResult>
    def get_prebuilt_ecr_image(dns_suffix: Optional[str] = None,
                               image_tag: Optional[str] = None,
                               region: Optional[str] = None,
                               repository_name: Optional[str] = None,
                               opts: Optional[InvokeOptions] = None) -> GetPrebuiltEcrImageResult
    def get_prebuilt_ecr_image_output(dns_suffix: Optional[pulumi.Input[str]] = None,
                               image_tag: Optional[pulumi.Input[str]] = None,
                               region: Optional[pulumi.Input[str]] = None,
                               repository_name: Optional[pulumi.Input[str]] = None,
                               opts: Optional[InvokeOptions] = None) -> Output[GetPrebuiltEcrImageResult]
    func GetPrebuiltEcrImage(ctx *Context, args *GetPrebuiltEcrImageArgs, opts ...InvokeOption) (*GetPrebuiltEcrImageResult, error)
    func GetPrebuiltEcrImageOutput(ctx *Context, args *GetPrebuiltEcrImageOutputArgs, opts ...InvokeOption) GetPrebuiltEcrImageResultOutput

    > Note: This function is named GetPrebuiltEcrImage in the Go SDK.

    public static class GetPrebuiltEcrImage 
    {
        public static Task<GetPrebuiltEcrImageResult> InvokeAsync(GetPrebuiltEcrImageArgs args, InvokeOptions? opts = null)
        public static Output<GetPrebuiltEcrImageResult> Invoke(GetPrebuiltEcrImageInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetPrebuiltEcrImageResult> getPrebuiltEcrImage(GetPrebuiltEcrImageArgs args, InvokeOptions options)
    // Output-based functions aren't available in Java yet
    
    fn::invoke:
      function: aws:sagemaker/getPrebuiltEcrImage:getPrebuiltEcrImage
      arguments:
        # arguments dictionary

    The following arguments are supported:

    RepositoryName string
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    DnsSuffix string
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    ImageTag string
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    Region string
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.
    RepositoryName string
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    DnsSuffix string
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    ImageTag string
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    Region string
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.
    repositoryName String
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    dnsSuffix String
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    imageTag String
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    region String
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.
    repositoryName string
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    dnsSuffix string
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    imageTag string
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    region string
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.
    repository_name str
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    dns_suffix str
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    image_tag str
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    region str
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.
    repositoryName String
    Name of the repository, which is generally the algorithm or library. Values include autogluon-inference, autogluon-training, blazingtext, djl-inference, factorization-machines, forecasting-deepar, huggingface-pytorch-inference, huggingface-pytorch-inference-neuron, huggingface-pytorch-inference-neuronx, huggingface-pytorch-tgi-inference, huggingface-pytorch-training, huggingface-pytorch-training-neuronx, huggingface-pytorch-trcomp-training, huggingface-tensorflow-inference, huggingface-tensorflow-training, huggingface-tensorflow-trcomp-training, image-classification, image-classification-neo, ipinsights, kmeans, knn, lda, linear-learner, mxnet-inference, mxnet-inference-eia, mxnet-training, ntm, object-detection, object2vec, pca, pytorch-inference, pytorch-inference-eia, pytorch-inference-graviton, pytorch-inference-neuronx, pytorch-training, pytorch-training-neuronx, pytorch-trcomp-training, randomcutforest, sagemaker-base-python, sagemaker-chainer, sagemaker-clarify-processing, sagemaker-data-wrangler-container, sagemaker-debugger-rules, sagemaker-geospatial-v1-0, sagemaker-inference-mxnet, sagemaker-inference-pytorch, sagemaker-inference-tensorflow, sagemaker-model-monitor-analyzer, sagemaker-mxnet, sagemaker-mxnet-eia, sagemaker-mxnet-serving, sagemaker-mxnet-serving-eia, sagemaker-neo-mxnet, sagemaker-neo-pytorch, sagemaker-neo-tensorflow, sagemaker-pytorch, sagemaker-rl-coach-container, sagemaker-rl-mxnet, sagemaker-rl-ray-container, sagemaker-rl-tensorflow, sagemaker-rl-vw-container, sagemaker-scikit-learn, sagemaker-spark-processing, sagemaker-sparkml-serving, sagemaker-tensorflow, sagemaker-tensorflow-eia, sagemaker-tensorflow-scriptmode, sagemaker-tensorflow-serving, sagemaker-tensorflow-serving-eia, sagemaker-tritonserver, sagemaker-xgboost, semantic-segmentation, seq2seq, stabilityai-pytorch-inference, tei, tei-cpu, tensorflow-inference, tensorflow-inference-eia, tensorflow-inference-graviton, tensorflow-training, and xgboost-neo.
    dnsSuffix String
    DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
    imageTag String
    Image tag for the Docker image. If not specified, the AWS provider sets the value to 1, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support 1 or latest and specific version must be used.
    region String
    Region to use in the registry path. If not specified, the AWS provider sets it to the current region.

    getPrebuiltEcrImage Result

    The following output properties are available:

    Id string
    The provider-assigned unique ID for this managed resource.
    RegistryId string
    Account ID containing the image. For example, 469771592824.
    RegistryPath string
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    RepositoryName string
    DnsSuffix string
    ImageTag string
    Region string
    Id string
    The provider-assigned unique ID for this managed resource.
    RegistryId string
    Account ID containing the image. For example, 469771592824.
    RegistryPath string
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    RepositoryName string
    DnsSuffix string
    ImageTag string
    Region string
    id String
    The provider-assigned unique ID for this managed resource.
    registryId String
    Account ID containing the image. For example, 469771592824.
    registryPath String
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    repositoryName String
    dnsSuffix String
    imageTag String
    region String
    id string
    The provider-assigned unique ID for this managed resource.
    registryId string
    Account ID containing the image. For example, 469771592824.
    registryPath string
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    repositoryName string
    dnsSuffix string
    imageTag string
    region string
    id str
    The provider-assigned unique ID for this managed resource.
    registry_id str
    Account ID containing the image. For example, 469771592824.
    registry_path str
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    repository_name str
    dns_suffix str
    image_tag str
    region str
    id String
    The provider-assigned unique ID for this managed resource.
    registryId String
    Account ID containing the image. For example, 469771592824.
    registryPath String
    Docker image URL. For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4.
    repositoryName String
    dnsSuffix String
    imageTag String
    region String

    Package Details

    Repository
    AWS Classic pulumi/pulumi-aws
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the aws Terraform Provider.
    aws logo
    AWS v6.60.0 published on Tuesday, Nov 19, 2024 by Pulumi