aws.bedrock.AgentAgent
Explore with Pulumi AI
Resource for managing an AWS Agents for Amazon Bedrock Agent.
Example Usage
Basic Usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const current = aws.getCallerIdentity({});
const currentGetPartition = aws.getPartition({});
const currentGetRegion = aws.getRegion({});
const exampleAgentTrust = Promise.all([current, currentGetPartition, currentGetRegion, current]).then(([current, currentGetPartition, currentGetRegion, current1]) => aws.iam.getPolicyDocument({
statements: [{
actions: ["sts:AssumeRole"],
principals: [{
identifiers: ["bedrock.amazonaws.com"],
type: "Service",
}],
conditions: [
{
test: "StringEquals",
values: [current.accountId],
variable: "aws:SourceAccount",
},
{
test: "ArnLike",
values: [`arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}:${current1.accountId}:agent/*`],
variable: "AWS:SourceArn",
},
],
}],
}));
const exampleAgentPermissions = Promise.all([currentGetPartition, currentGetRegion]).then(([currentGetPartition, currentGetRegion]) => aws.iam.getPolicyDocument({
statements: [{
actions: ["bedrock:InvokeModel"],
resources: [`arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}::foundation-model/anthropic.claude-v2`],
}],
}));
const example = new aws.iam.Role("example", {
assumeRolePolicy: exampleAgentTrust.then(exampleAgentTrust => exampleAgentTrust.json),
namePrefix: "AmazonBedrockExecutionRoleForAgents_",
});
const exampleRolePolicy = new aws.iam.RolePolicy("example", {
policy: exampleAgentPermissions.then(exampleAgentPermissions => exampleAgentPermissions.json),
role: example.id,
});
const exampleAgentAgent = new aws.bedrock.AgentAgent("example", {
agentName: "my-agent-name",
agentResourceRoleArn: example.arn,
idleSessionTtlInSeconds: 500,
foundationModel: "anthropic.claude-v2",
});
import pulumi
import pulumi_aws as aws
current = aws.get_caller_identity()
current_get_partition = aws.get_partition()
current_get_region = aws.get_region()
example_agent_trust = aws.iam.get_policy_document(statements=[{
"actions": ["sts:AssumeRole"],
"principals": [{
"identifiers": ["bedrock.amazonaws.com"],
"type": "Service",
}],
"conditions": [
{
"test": "StringEquals",
"values": [current.account_id],
"variable": "aws:SourceAccount",
},
{
"test": "ArnLike",
"values": [f"arn:{current_get_partition.partition}:bedrock:{current_get_region.name}:{current.account_id}:agent/*"],
"variable": "AWS:SourceArn",
},
],
}])
example_agent_permissions = aws.iam.get_policy_document(statements=[{
"actions": ["bedrock:InvokeModel"],
"resources": [f"arn:{current_get_partition.partition}:bedrock:{current_get_region.name}::foundation-model/anthropic.claude-v2"],
}])
example = aws.iam.Role("example",
assume_role_policy=example_agent_trust.json,
name_prefix="AmazonBedrockExecutionRoleForAgents_")
example_role_policy = aws.iam.RolePolicy("example",
policy=example_agent_permissions.json,
role=example.id)
example_agent_agent = aws.bedrock.AgentAgent("example",
agent_name="my-agent-name",
agent_resource_role_arn=example.arn,
idle_session_ttl_in_seconds=500,
foundation_model="anthropic.claude-v2")
package main
import (
"fmt"
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws"
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrock"
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/iam"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
current, err := aws.GetCallerIdentity(ctx, &aws.GetCallerIdentityArgs{
}, nil);
if err != nil {
return err
}
currentGetPartition, err := aws.GetPartition(ctx, &aws.GetPartitionArgs{
}, nil);
if err != nil {
return err
}
currentGetRegion, err := aws.GetRegion(ctx, &aws.GetRegionArgs{
}, nil);
if err != nil {
return err
}
exampleAgentTrust, err := iam.GetPolicyDocument(ctx, &iam.GetPolicyDocumentArgs{
Statements: []iam.GetPolicyDocumentStatement{
{
Actions: []string{
"sts:AssumeRole",
},
Principals: []iam.GetPolicyDocumentStatementPrincipal{
{
Identifiers: []string{
"bedrock.amazonaws.com",
},
Type: "Service",
},
},
Conditions: []iam.GetPolicyDocumentStatementCondition{
{
Test: "StringEquals",
Values: interface{}{
current.AccountId,
},
Variable: "aws:SourceAccount",
},
{
Test: "ArnLike",
Values: []string{
fmt.Sprintf("arn:%v:bedrock:%v:%v:agent/*", currentGetPartition.Partition, currentGetRegion.Name, current.AccountId),
},
Variable: "AWS:SourceArn",
},
},
},
},
}, nil);
if err != nil {
return err
}
exampleAgentPermissions, err := iam.GetPolicyDocument(ctx, &iam.GetPolicyDocumentArgs{
Statements: []iam.GetPolicyDocumentStatement{
{
Actions: []string{
"bedrock:InvokeModel",
},
Resources: []string{
fmt.Sprintf("arn:%v:bedrock:%v::foundation-model/anthropic.claude-v2", currentGetPartition.Partition, currentGetRegion.Name),
},
},
},
}, nil);
if err != nil {
return err
}
example, err := iam.NewRole(ctx, "example", &iam.RoleArgs{
AssumeRolePolicy: pulumi.String(exampleAgentTrust.Json),
NamePrefix: pulumi.String("AmazonBedrockExecutionRoleForAgents_"),
})
if err != nil {
return err
}
_, err = iam.NewRolePolicy(ctx, "example", &iam.RolePolicyArgs{
Policy: pulumi.String(exampleAgentPermissions.Json),
Role: example.ID(),
})
if err != nil {
return err
}
_, err = bedrock.NewAgentAgent(ctx, "example", &bedrock.AgentAgentArgs{
AgentName: pulumi.String("my-agent-name"),
AgentResourceRoleArn: example.Arn,
IdleSessionTtlInSeconds: pulumi.Int(500),
FoundationModel: pulumi.String("anthropic.claude-v2"),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() =>
{
var current = Aws.GetCallerIdentity.Invoke();
var currentGetPartition = Aws.GetPartition.Invoke();
var currentGetRegion = Aws.GetRegion.Invoke();
var exampleAgentTrust = Aws.Iam.GetPolicyDocument.Invoke(new()
{
Statements = new[]
{
new Aws.Iam.Inputs.GetPolicyDocumentStatementInputArgs
{
Actions = new[]
{
"sts:AssumeRole",
},
Principals = new[]
{
new Aws.Iam.Inputs.GetPolicyDocumentStatementPrincipalInputArgs
{
Identifiers = new[]
{
"bedrock.amazonaws.com",
},
Type = "Service",
},
},
Conditions = new[]
{
new Aws.Iam.Inputs.GetPolicyDocumentStatementConditionInputArgs
{
Test = "StringEquals",
Values = new[]
{
current.Apply(getCallerIdentityResult => getCallerIdentityResult.AccountId),
},
Variable = "aws:SourceAccount",
},
new Aws.Iam.Inputs.GetPolicyDocumentStatementConditionInputArgs
{
Test = "ArnLike",
Values = new[]
{
$"arn:{currentGetPartition.Apply(getPartitionResult => getPartitionResult.Partition)}:bedrock:{currentGetRegion.Apply(getRegionResult => getRegionResult.Name)}:{current.Apply(getCallerIdentityResult => getCallerIdentityResult.AccountId)}:agent/*",
},
Variable = "AWS:SourceArn",
},
},
},
},
});
var exampleAgentPermissions = Aws.Iam.GetPolicyDocument.Invoke(new()
{
Statements = new[]
{
new Aws.Iam.Inputs.GetPolicyDocumentStatementInputArgs
{
Actions = new[]
{
"bedrock:InvokeModel",
},
Resources = new[]
{
$"arn:{currentGetPartition.Apply(getPartitionResult => getPartitionResult.Partition)}:bedrock:{currentGetRegion.Apply(getRegionResult => getRegionResult.Name)}::foundation-model/anthropic.claude-v2",
},
},
},
});
var example = new Aws.Iam.Role("example", new()
{
AssumeRolePolicy = exampleAgentTrust.Apply(getPolicyDocumentResult => getPolicyDocumentResult.Json),
NamePrefix = "AmazonBedrockExecutionRoleForAgents_",
});
var exampleRolePolicy = new Aws.Iam.RolePolicy("example", new()
{
Policy = exampleAgentPermissions.Apply(getPolicyDocumentResult => getPolicyDocumentResult.Json),
Role = example.Id,
});
var exampleAgentAgent = new Aws.Bedrock.AgentAgent("example", new()
{
AgentName = "my-agent-name",
AgentResourceRoleArn = example.Arn,
IdleSessionTtlInSeconds = 500,
FoundationModel = "anthropic.claude-v2",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.AwsFunctions;
import com.pulumi.aws.inputs.GetCallerIdentityArgs;
import com.pulumi.aws.inputs.GetPartitionArgs;
import com.pulumi.aws.inputs.GetRegionArgs;
import com.pulumi.aws.iam.IamFunctions;
import com.pulumi.aws.iam.inputs.GetPolicyDocumentArgs;
import com.pulumi.aws.iam.Role;
import com.pulumi.aws.iam.RoleArgs;
import com.pulumi.aws.iam.RolePolicy;
import com.pulumi.aws.iam.RolePolicyArgs;
import com.pulumi.aws.bedrock.AgentAgent;
import com.pulumi.aws.bedrock.AgentAgentArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var current = AwsFunctions.getCallerIdentity();
final var currentGetPartition = AwsFunctions.getPartition();
final var currentGetRegion = AwsFunctions.getRegion();
final var exampleAgentTrust = IamFunctions.getPolicyDocument(GetPolicyDocumentArgs.builder()
.statements(GetPolicyDocumentStatementArgs.builder()
.actions("sts:AssumeRole")
.principals(GetPolicyDocumentStatementPrincipalArgs.builder()
.identifiers("bedrock.amazonaws.com")
.type("Service")
.build())
.conditions(
GetPolicyDocumentStatementConditionArgs.builder()
.test("StringEquals")
.values(current.applyValue(getCallerIdentityResult -> getCallerIdentityResult.accountId()))
.variable("aws:SourceAccount")
.build(),
GetPolicyDocumentStatementConditionArgs.builder()
.test("ArnLike")
.values(String.format("arn:%s:bedrock:%s:%s:agent/*", currentGetPartition.applyValue(getPartitionResult -> getPartitionResult.partition()),currentGetRegion.applyValue(getRegionResult -> getRegionResult.name()),current.applyValue(getCallerIdentityResult -> getCallerIdentityResult.accountId())))
.variable("AWS:SourceArn")
.build())
.build())
.build());
final var exampleAgentPermissions = IamFunctions.getPolicyDocument(GetPolicyDocumentArgs.builder()
.statements(GetPolicyDocumentStatementArgs.builder()
.actions("bedrock:InvokeModel")
.resources(String.format("arn:%s:bedrock:%s::foundation-model/anthropic.claude-v2", currentGetPartition.applyValue(getPartitionResult -> getPartitionResult.partition()),currentGetRegion.applyValue(getRegionResult -> getRegionResult.name())))
.build())
.build());
var example = new Role("example", RoleArgs.builder()
.assumeRolePolicy(exampleAgentTrust.applyValue(getPolicyDocumentResult -> getPolicyDocumentResult.json()))
.namePrefix("AmazonBedrockExecutionRoleForAgents_")
.build());
var exampleRolePolicy = new RolePolicy("exampleRolePolicy", RolePolicyArgs.builder()
.policy(exampleAgentPermissions.applyValue(getPolicyDocumentResult -> getPolicyDocumentResult.json()))
.role(example.id())
.build());
var exampleAgentAgent = new AgentAgent("exampleAgentAgent", AgentAgentArgs.builder()
.agentName("my-agent-name")
.agentResourceRoleArn(example.arn())
.idleSessionTtlInSeconds(500)
.foundationModel("anthropic.claude-v2")
.build());
}
}
resources:
example:
type: aws:iam:Role
properties:
assumeRolePolicy: ${exampleAgentTrust.json}
namePrefix: AmazonBedrockExecutionRoleForAgents_
exampleRolePolicy:
type: aws:iam:RolePolicy
name: example
properties:
policy: ${exampleAgentPermissions.json}
role: ${example.id}
exampleAgentAgent:
type: aws:bedrock:AgentAgent
name: example
properties:
agentName: my-agent-name
agentResourceRoleArn: ${example.arn}
idleSessionTtlInSeconds: 500
foundationModel: anthropic.claude-v2
variables:
current:
fn::invoke:
Function: aws:getCallerIdentity
Arguments: {}
currentGetPartition:
fn::invoke:
Function: aws:getPartition
Arguments: {}
currentGetRegion:
fn::invoke:
Function: aws:getRegion
Arguments: {}
exampleAgentTrust:
fn::invoke:
Function: aws:iam:getPolicyDocument
Arguments:
statements:
- actions:
- sts:AssumeRole
principals:
- identifiers:
- bedrock.amazonaws.com
type: Service
conditions:
- test: StringEquals
values:
- ${current.accountId}
variable: aws:SourceAccount
- test: ArnLike
values:
- arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}:${current.accountId}:agent/*
variable: AWS:SourceArn
exampleAgentPermissions:
fn::invoke:
Function: aws:iam:getPolicyDocument
Arguments:
statements:
- actions:
- bedrock:InvokeModel
resources:
- arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}::foundation-model/anthropic.claude-v2
Create AgentAgent Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new AgentAgent(name: string, args: AgentAgentArgs, opts?: CustomResourceOptions);
@overload
def AgentAgent(resource_name: str,
args: AgentAgentArgs,
opts: Optional[ResourceOptions] = None)
@overload
def AgentAgent(resource_name: str,
opts: Optional[ResourceOptions] = None,
foundation_model: Optional[str] = None,
agent_resource_role_arn: Optional[str] = None,
agent_name: Optional[str] = None,
idle_session_ttl_in_seconds: Optional[int] = None,
description: Optional[str] = None,
guardrail_configurations: Optional[Sequence[AgentAgentGuardrailConfigurationArgs]] = None,
customer_encryption_key_arn: Optional[str] = None,
instruction: Optional[str] = None,
prepare_agent: Optional[bool] = None,
prompt_override_configurations: Optional[Sequence[AgentAgentPromptOverrideConfigurationArgs]] = None,
skip_resource_in_use_check: Optional[bool] = None,
tags: Optional[Mapping[str, str]] = None,
timeouts: Optional[AgentAgentTimeoutsArgs] = None)
func NewAgentAgent(ctx *Context, name string, args AgentAgentArgs, opts ...ResourceOption) (*AgentAgent, error)
public AgentAgent(string name, AgentAgentArgs args, CustomResourceOptions? opts = null)
public AgentAgent(String name, AgentAgentArgs args)
public AgentAgent(String name, AgentAgentArgs args, CustomResourceOptions options)
type: aws:bedrock:AgentAgent
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var agentAgentResource = new Aws.Bedrock.AgentAgent("agentAgentResource", new()
{
FoundationModel = "string",
AgentResourceRoleArn = "string",
AgentName = "string",
IdleSessionTtlInSeconds = 0,
Description = "string",
GuardrailConfigurations = new[]
{
new Aws.Bedrock.Inputs.AgentAgentGuardrailConfigurationArgs
{
GuardrailIdentifier = "string",
GuardrailVersion = "string",
},
},
CustomerEncryptionKeyArn = "string",
Instruction = "string",
PrepareAgent = false,
PromptOverrideConfigurations = new[]
{
new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationArgs
{
OverrideLambda = "string",
PromptConfigurations = new[]
{
new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationPromptConfigurationArgs
{
BasePromptTemplate = "string",
InferenceConfigurations = new[]
{
new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs
{
MaxLength = 0,
StopSequences = new[]
{
"string",
},
Temperature = 0,
TopK = 0,
TopP = 0,
},
},
ParserMode = "string",
PromptCreationMode = "string",
PromptState = "string",
PromptType = "string",
},
},
},
},
SkipResourceInUseCheck = false,
Tags =
{
{ "string", "string" },
},
Timeouts = new Aws.Bedrock.Inputs.AgentAgentTimeoutsArgs
{
Create = "string",
Delete = "string",
Update = "string",
},
});
example, err := bedrock.NewAgentAgent(ctx, "agentAgentResource", &bedrock.AgentAgentArgs{
FoundationModel: pulumi.String("string"),
AgentResourceRoleArn: pulumi.String("string"),
AgentName: pulumi.String("string"),
IdleSessionTtlInSeconds: pulumi.Int(0),
Description: pulumi.String("string"),
GuardrailConfigurations: bedrock.AgentAgentGuardrailConfigurationArray{
&bedrock.AgentAgentGuardrailConfigurationArgs{
GuardrailIdentifier: pulumi.String("string"),
GuardrailVersion: pulumi.String("string"),
},
},
CustomerEncryptionKeyArn: pulumi.String("string"),
Instruction: pulumi.String("string"),
PrepareAgent: pulumi.Bool(false),
PromptOverrideConfigurations: bedrock.AgentAgentPromptOverrideConfigurationArray{
&bedrock.AgentAgentPromptOverrideConfigurationArgs{
OverrideLambda: pulumi.String("string"),
PromptConfigurations: bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationArray{
&bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationArgs{
BasePromptTemplate: pulumi.String("string"),
InferenceConfigurations: bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArray{
&bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs{
MaxLength: pulumi.Int(0),
StopSequences: pulumi.StringArray{
pulumi.String("string"),
},
Temperature: pulumi.Float64(0),
TopK: pulumi.Int(0),
TopP: pulumi.Float64(0),
},
},
ParserMode: pulumi.String("string"),
PromptCreationMode: pulumi.String("string"),
PromptState: pulumi.String("string"),
PromptType: pulumi.String("string"),
},
},
},
},
SkipResourceInUseCheck: pulumi.Bool(false),
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
Timeouts: &bedrock.AgentAgentTimeoutsArgs{
Create: pulumi.String("string"),
Delete: pulumi.String("string"),
Update: pulumi.String("string"),
},
})
var agentAgentResource = new AgentAgent("agentAgentResource", AgentAgentArgs.builder()
.foundationModel("string")
.agentResourceRoleArn("string")
.agentName("string")
.idleSessionTtlInSeconds(0)
.description("string")
.guardrailConfigurations(AgentAgentGuardrailConfigurationArgs.builder()
.guardrailIdentifier("string")
.guardrailVersion("string")
.build())
.customerEncryptionKeyArn("string")
.instruction("string")
.prepareAgent(false)
.promptOverrideConfigurations(AgentAgentPromptOverrideConfigurationArgs.builder()
.overrideLambda("string")
.promptConfigurations(AgentAgentPromptOverrideConfigurationPromptConfigurationArgs.builder()
.basePromptTemplate("string")
.inferenceConfigurations(AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs.builder()
.maxLength(0)
.stopSequences("string")
.temperature(0)
.topK(0)
.topP(0)
.build())
.parserMode("string")
.promptCreationMode("string")
.promptState("string")
.promptType("string")
.build())
.build())
.skipResourceInUseCheck(false)
.tags(Map.of("string", "string"))
.timeouts(AgentAgentTimeoutsArgs.builder()
.create("string")
.delete("string")
.update("string")
.build())
.build());
agent_agent_resource = aws.bedrock.AgentAgent("agentAgentResource",
foundation_model="string",
agent_resource_role_arn="string",
agent_name="string",
idle_session_ttl_in_seconds=0,
description="string",
guardrail_configurations=[{
"guardrail_identifier": "string",
"guardrail_version": "string",
}],
customer_encryption_key_arn="string",
instruction="string",
prepare_agent=False,
prompt_override_configurations=[{
"override_lambda": "string",
"prompt_configurations": [{
"base_prompt_template": "string",
"inference_configurations": [{
"max_length": 0,
"stop_sequences": ["string"],
"temperature": 0,
"top_k": 0,
"top_p": 0,
}],
"parser_mode": "string",
"prompt_creation_mode": "string",
"prompt_state": "string",
"prompt_type": "string",
}],
}],
skip_resource_in_use_check=False,
tags={
"string": "string",
},
timeouts={
"create": "string",
"delete": "string",
"update": "string",
})
const agentAgentResource = new aws.bedrock.AgentAgent("agentAgentResource", {
foundationModel: "string",
agentResourceRoleArn: "string",
agentName: "string",
idleSessionTtlInSeconds: 0,
description: "string",
guardrailConfigurations: [{
guardrailIdentifier: "string",
guardrailVersion: "string",
}],
customerEncryptionKeyArn: "string",
instruction: "string",
prepareAgent: false,
promptOverrideConfigurations: [{
overrideLambda: "string",
promptConfigurations: [{
basePromptTemplate: "string",
inferenceConfigurations: [{
maxLength: 0,
stopSequences: ["string"],
temperature: 0,
topK: 0,
topP: 0,
}],
parserMode: "string",
promptCreationMode: "string",
promptState: "string",
promptType: "string",
}],
}],
skipResourceInUseCheck: false,
tags: {
string: "string",
},
timeouts: {
create: "string",
"delete": "string",
update: "string",
},
});
type: aws:bedrock:AgentAgent
properties:
agentName: string
agentResourceRoleArn: string
customerEncryptionKeyArn: string
description: string
foundationModel: string
guardrailConfigurations:
- guardrailIdentifier: string
guardrailVersion: string
idleSessionTtlInSeconds: 0
instruction: string
prepareAgent: false
promptOverrideConfigurations:
- overrideLambda: string
promptConfigurations:
- basePromptTemplate: string
inferenceConfigurations:
- maxLength: 0
stopSequences:
- string
temperature: 0
topK: 0
topP: 0
parserMode: string
promptCreationMode: string
promptState: string
promptType: string
skipResourceInUseCheck: false
tags:
string: string
timeouts:
create: string
delete: string
update: string
AgentAgent Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The AgentAgent resource accepts the following input properties:
- Agent
Name string - Name of the agent.
- Agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- Foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- Customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- Guardrail
Configurations List<AgentAgent Guardrail Configuration> - Idle
Session intTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- Prepare
Agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - Prompt
Override List<AgentConfigurations Agent Prompt Override Configuration> - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - Skip
Resource boolIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Timeouts
Agent
Agent Timeouts
- Agent
Name string - Name of the agent.
- Agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- Foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- Customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- Guardrail
Configurations []AgentAgent Guardrail Configuration Args - Idle
Session intTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- Prepare
Agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - Prompt
Override []AgentConfigurations Agent Prompt Override Configuration Args - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - Skip
Resource boolIn Use Check - Whether the in-use check is skipped when deleting the agent.
- map[string]string
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Timeouts
Agent
Agent Timeouts Args
- agent
Name String - Name of the agent.
- agent
Resource StringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- foundation
Model String Foundation model used for orchestration by the agent.
The following arguments are optional:
- customer
Encryption StringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- guardrail
Configurations List<AgentAgent Guardrail Configuration> - idle
Session IntegerTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent Boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override List<AgentConfigurations Agent Prompt Override Configuration> - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource BooleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - timeouts
Agent
Agent Timeouts
- agent
Name string - Name of the agent.
- agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description string
- Description of the agent.
- guardrail
Configurations AgentAgent Guardrail Configuration[] - idle
Session numberTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override AgentConfigurations Agent Prompt Override Configuration[] - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource booleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - timeouts
Agent
Agent Timeouts
- agent_
name str - Name of the agent.
- agent_
resource_ strrole_ arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- foundation_
model str Foundation model used for orchestration by the agent.
The following arguments are optional:
- customer_
encryption_ strkey_ arn - ARN of the AWS KMS key that encrypts the agent.
- description str
- Description of the agent.
- guardrail_
configurations Sequence[AgentAgent Guardrail Configuration Args] - idle_
session_ intttl_ in_ seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction str
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare_
agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt_
override_ Sequence[Agentconfigurations Agent Prompt Override Configuration Args] - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip_
resource_ boolin_ use_ check - Whether the in-use check is skipped when deleting the agent.
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - timeouts
Agent
Agent Timeouts Args
- agent
Name String - Name of the agent.
- agent
Resource StringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- foundation
Model String Foundation model used for orchestration by the agent.
The following arguments are optional:
- customer
Encryption StringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- guardrail
Configurations List<Property Map> - idle
Session NumberTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent Boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override List<Property Map>Configurations - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource BooleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Map<String>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - timeouts Property Map
Outputs
All input properties are implicitly available as output properties. Additionally, the AgentAgent resource produces the following output properties:
- Agent
Arn string - ARN of the agent.
- Agent
Id string - Unique identifier of the agent.
- Agent
Version string - Version of the agent.
- Id string
- The provider-assigned unique ID for this managed resource.
- Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
- Agent
Arn string - ARN of the agent.
- Agent
Id string - Unique identifier of the agent.
- Agent
Version string - Version of the agent.
- Id string
- The provider-assigned unique ID for this managed resource.
- map[string]string
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
- agent
Arn String - ARN of the agent.
- agent
Id String - Unique identifier of the agent.
- agent
Version String - Version of the agent.
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
- agent
Arn string - ARN of the agent.
- agent
Id string - Unique identifier of the agent.
- agent
Version string - Version of the agent.
- id string
- The provider-assigned unique ID for this managed resource.
- {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
- agent_
arn str - ARN of the agent.
- agent_
id str - Unique identifier of the agent.
- agent_
version str - Version of the agent.
- id str
- The provider-assigned unique ID for this managed resource.
- Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
- agent
Arn String - ARN of the agent.
- agent
Id String - Unique identifier of the agent.
- agent
Version String - Version of the agent.
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block.
Look up Existing AgentAgent Resource
Get an existing AgentAgent resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: AgentAgentState, opts?: CustomResourceOptions): AgentAgent
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
agent_arn: Optional[str] = None,
agent_id: Optional[str] = None,
agent_name: Optional[str] = None,
agent_resource_role_arn: Optional[str] = None,
agent_version: Optional[str] = None,
customer_encryption_key_arn: Optional[str] = None,
description: Optional[str] = None,
foundation_model: Optional[str] = None,
guardrail_configurations: Optional[Sequence[AgentAgentGuardrailConfigurationArgs]] = None,
idle_session_ttl_in_seconds: Optional[int] = None,
instruction: Optional[str] = None,
prepare_agent: Optional[bool] = None,
prompt_override_configurations: Optional[Sequence[AgentAgentPromptOverrideConfigurationArgs]] = None,
skip_resource_in_use_check: Optional[bool] = None,
tags: Optional[Mapping[str, str]] = None,
tags_all: Optional[Mapping[str, str]] = None,
timeouts: Optional[AgentAgentTimeoutsArgs] = None) -> AgentAgent
func GetAgentAgent(ctx *Context, name string, id IDInput, state *AgentAgentState, opts ...ResourceOption) (*AgentAgent, error)
public static AgentAgent Get(string name, Input<string> id, AgentAgentState? state, CustomResourceOptions? opts = null)
public static AgentAgent get(String name, Output<String> id, AgentAgentState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Agent
Arn string - ARN of the agent.
- Agent
Id string - Unique identifier of the agent.
- Agent
Name string - Name of the agent.
- Agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- Agent
Version string - Version of the agent.
- Customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- Foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- Guardrail
Configurations List<AgentAgent Guardrail Configuration> - Idle
Session intTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- Prepare
Agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - Prompt
Override List<AgentConfigurations Agent Prompt Override Configuration> - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - Skip
Resource boolIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Timeouts
Agent
Agent Timeouts
- Agent
Arn string - ARN of the agent.
- Agent
Id string - Unique identifier of the agent.
- Agent
Name string - Name of the agent.
- Agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- Agent
Version string - Version of the agent.
- Customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- Foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- Guardrail
Configurations []AgentAgent Guardrail Configuration Args - Idle
Session intTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- Prepare
Agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - Prompt
Override []AgentConfigurations Agent Prompt Override Configuration Args - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - Skip
Resource boolIn Use Check - Whether the in-use check is skipped when deleting the agent.
- map[string]string
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - map[string]string
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - Timeouts
Agent
Agent Timeouts Args
- agent
Arn String - ARN of the agent.
- agent
Id String - Unique identifier of the agent.
- agent
Name String - Name of the agent.
- agent
Resource StringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- agent
Version String - Version of the agent.
- customer
Encryption StringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- foundation
Model String Foundation model used for orchestration by the agent.
The following arguments are optional:
- guardrail
Configurations List<AgentAgent Guardrail Configuration> - idle
Session IntegerTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent Boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override List<AgentConfigurations Agent Prompt Override Configuration> - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource BooleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - timeouts
Agent
Agent Timeouts
- agent
Arn string - ARN of the agent.
- agent
Id string - Unique identifier of the agent.
- agent
Name string - Name of the agent.
- agent
Resource stringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- agent
Version string - Version of the agent.
- customer
Encryption stringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description string
- Description of the agent.
- foundation
Model string Foundation model used for orchestration by the agent.
The following arguments are optional:
- guardrail
Configurations AgentAgent Guardrail Configuration[] - idle
Session numberTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction string
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override AgentConfigurations Agent Prompt Override Configuration[] - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource booleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - timeouts
Agent
Agent Timeouts
- agent_
arn str - ARN of the agent.
- agent_
id str - Unique identifier of the agent.
- agent_
name str - Name of the agent.
- agent_
resource_ strrole_ arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- agent_
version str - Version of the agent.
- customer_
encryption_ strkey_ arn - ARN of the AWS KMS key that encrypts the agent.
- description str
- Description of the agent.
- foundation_
model str Foundation model used for orchestration by the agent.
The following arguments are optional:
- guardrail_
configurations Sequence[AgentAgent Guardrail Configuration Args] - idle_
session_ intttl_ in_ seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction str
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare_
agent bool - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt_
override_ Sequence[Agentconfigurations Agent Prompt Override Configuration Args] - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip_
resource_ boolin_ use_ check - Whether the in-use check is skipped when deleting the agent.
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - timeouts
Agent
Agent Timeouts Args
- agent
Arn String - ARN of the agent.
- agent
Id String - Unique identifier of the agent.
- agent
Name String - Name of the agent.
- agent
Resource StringRole Arn - ARN of the IAM role with permissions to invoke API operations on the agent.
- agent
Version String - Version of the agent.
- customer
Encryption StringKey Arn - ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- foundation
Model String Foundation model used for orchestration by the agent.
The following arguments are optional:
- guardrail
Configurations List<Property Map> - idle
Session NumberTtl In Seconds - Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users.
- prepare
Agent Boolean - Whether to prepare the agent after creation or modification. Defaults to
true
. - prompt
Override List<Property Map>Configurations - Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See
prompt_override_configuration
Block for details. - skip
Resource BooleanIn Use Check - Whether the in-use check is skipped when deleting the agent.
- Map<String>
- Map of tags assigned to the resource. If configured with a provider
default_tags
configuration block present, tags with matching keys will overwrite those defined at the provider-level. - Map<String>
- Map of tags assigned to the resource, including those inherited from the provider
default_tags
configuration block. - timeouts Property Map
Supporting Types
AgentAgentGuardrailConfiguration, AgentAgentGuardrailConfigurationArgs
- Guardrail
Identifier string - Unique identifier of the guardrail.
- Guardrail
Version string - Version of the guardrail.
- Guardrail
Identifier string - Unique identifier of the guardrail.
- Guardrail
Version string - Version of the guardrail.
- guardrail
Identifier String - Unique identifier of the guardrail.
- guardrail
Version String - Version of the guardrail.
- guardrail
Identifier string - Unique identifier of the guardrail.
- guardrail
Version string - Version of the guardrail.
- guardrail_
identifier str - Unique identifier of the guardrail.
- guardrail_
version str - Version of the guardrail.
- guardrail
Identifier String - Unique identifier of the guardrail.
- guardrail
Version String - Version of the guardrail.
AgentAgentPromptOverrideConfiguration, AgentAgentPromptOverrideConfigurationArgs
- Override
Lambda string - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - Prompt
Configurations List<AgentAgent Prompt Override Configuration Prompt Configuration> - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
- Override
Lambda string - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - Prompt
Configurations []AgentAgent Prompt Override Configuration Prompt Configuration - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
- override
Lambda String - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - prompt
Configurations List<AgentAgent Prompt Override Configuration Prompt Configuration> - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
- override
Lambda string - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - prompt
Configurations AgentAgent Prompt Override Configuration Prompt Configuration[] - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
- override_
lambda str - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - prompt_
configurations Sequence[AgentAgent Prompt Override Configuration Prompt Configuration] - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
- override
Lambda String - ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the
prompt_configurations
block must contain aparser_mode
value that is set toOVERRIDDEN
. - prompt
Configurations List<Property Map> - Configurations to override a prompt template in one part of an agent sequence. See
prompt_configurations
Block for details.
AgentAgentPromptOverrideConfigurationPromptConfiguration, AgentAgentPromptOverrideConfigurationPromptConfigurationArgs
- Base
Prompt stringTemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- Inference
Configurations List<AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration> - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - Parser
Mode string - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - Prompt
Creation stringMode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - Prompt
State string - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - Prompt
Type string - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
- Base
Prompt stringTemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- Inference
Configurations []AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - Parser
Mode string - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - Prompt
Creation stringMode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - Prompt
State string - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - Prompt
Type string - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
- base
Prompt StringTemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inference
Configurations List<AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration> - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - parser
Mode String - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
Creation StringMode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
State String - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - prompt
Type String - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
- base
Prompt stringTemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inference
Configurations AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration[] - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - parser
Mode string - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
Creation stringMode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
State string - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - prompt
Type string - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
- base_
prompt_ strtemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inference_
configurations Sequence[AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration] - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - parser_
mode str - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - prompt_
creation_ strmode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - prompt_
state str - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - prompt_
type str - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
- base
Prompt StringTemplate - prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inference
Configurations List<Property Map> - Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the
prompt_type
. For more information, see Inference parameters for foundation models. Seeinference_configuration
Block for details. - parser
Mode String - Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the
prompt_type
. If you set the argument asOVERRIDDEN
, theoverride_lambda
argument in theprompt_override_configuration
block must be specified with the ARN of a Lambda function. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
Creation StringMode - Whether to override the default prompt template for this
prompt_type
. Set this argument toOVERRIDDEN
to use the prompt that you provide in thebase_prompt_template
. If you leave it asDEFAULT
, the agent uses a default prompt template. Valid values:DEFAULT
,OVERRIDDEN
. - prompt
State String - Whether to allow the agent to carry out the step specified in the
prompt_type
. If you set this argument toDISABLED
, the agent skips that step. Valid Values:ENABLED
,DISABLED
. - prompt
Type String - Step in the agent sequence that this prompt configuration applies to. Valid values:
PRE_PROCESSING
,ORCHESTRATION
,POST_PROCESSING
,KNOWLEDGE_BASE_RESPONSE_GENERATION
.
AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfiguration, AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs
- Max
Length int - Maximum number of tokens to allow in the generated response.
- Stop
Sequences List<string> - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- Temperature double
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- Top
K int - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- Top
P double - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- Max
Length int - Maximum number of tokens to allow in the generated response.
- Stop
Sequences []string - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- Temperature float64
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- Top
K int - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- Top
P float64 - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- max
Length Integer - Maximum number of tokens to allow in the generated response.
- stop
Sequences List<String> - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature Double
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- top
K Integer - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- top
P Double - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- max
Length number - Maximum number of tokens to allow in the generated response.
- stop
Sequences string[] - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature number
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- top
K number - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- top
P number - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- max_
length int - Maximum number of tokens to allow in the generated response.
- stop_
sequences Sequence[str] - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature float
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- top_
k int - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- top_
p float - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- max
Length Number - Maximum number of tokens to allow in the generated response.
- stop
Sequences List<String> - List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature Number
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- top
K Number - Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- top
P Number - Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
AgentAgentTimeouts, AgentAgentTimeoutsArgs
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
Import
Using pulumi import
, import Agents for Amazon Bedrock Agent using the agent ID. For example:
$ pulumi import aws:bedrock/agentAgent:AgentAgent example GGRRAED6JP
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
aws
Terraform Provider.